
Spurious isospin symmetry breaking
in the IMSRG
Alexander Farren

2023 Naughton Fellowship REU Program
Department of Physics and Astronomy

University of Notre Dame

ADVISOR(S): Prof. Ragnar S. Stroberg



Abstract
The basics of nuclear physics and quantum many-body theory are covered with the goal of understanding the
IMSRG formalism of ab initio nuclear many-body theory. Sources of spurious isospin symmetry breaking (ISB)
in both post-Hartree-Fock IMSRG (2) and (3) truncations for a reduced orbital space 14O Minnesota reference
were traced back to a problematic nested commutator [𝜂(𝑠), [𝜂(𝑠), 𝑇 2(0)

]]. The latter was reduced to an analytic
sum which agreed with computational results. Asymmetric definitions of the reference state, 𝐻od(𝑠) and Δ were
found to spoil the isospin symmetry of the problematic term. Using Møller-Plesset partitioning of Δ in the White
generator 𝜂(𝑠) ∼ 1∕Δ or simply replacing the latter with the imaginary time generator 𝜂(𝑠) ∼ sgn(Δ) remedied the
spurious ISB for symmetric reference and offdiagonal definitions.
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beyond this summer REU project, Dr. Bı̌ngchéng Hé without whom I would not have been able to even run the
IMSRG++ code and Jonathan Riess for his constant skepticism which pushed my knowledge to its limits at times.
Thanks also to Prof. Umesh Garg and Ms. Kristen Amsler, who gave two dozen REU students a great summer.
This summer research was funded by the Naughton Foundation, to whom I am very grateful.

– 2 –



Contents

0 Mise-en-scène 4

1 Nuclear Physics 4
1.1 Nuclei properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Binding energy and nuclear force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Shell model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Nuclear spin and parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Beta decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6 Isospin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Quantum Many-Body Theory 14
2.1 Second quantisation and Fock space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Particle-hole formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Normal ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Wick’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Hartree-Fock equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Hamiltonian partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.7 Diagrammatic notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 IMSRG Formalism 25
3.1 Flow equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Magnus formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Choice of generator 𝜂(𝑠) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Spurious Isospin Symmetry Breaking 29
4.1 Evidence for spurious ISB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Sources of spurious ISB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Remedies for spurious ISB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Conclusion 37

Appendix 38

References 41

– 3 –



0 Mise-en-scène

Since the 1950’s, we have been developing and refining the Standard Model of particle physics by challenging
theoretical predictions with increasingly precise experimental data. One such prediction is the unitarity of the
Cabibbo-Kobayashi-Maskawa (CKM) matrix. The CKM matrix

⎛
⎜⎜⎜⎝

|𝑑w⟩
|𝑠w⟩
|𝑏w⟩

⎞⎟⎟⎟⎠
=
⎛⎜⎜⎜⎝

𝑉ud 𝑉us 𝑉ub
𝑉cd 𝑉cs 𝑉cb
𝑉td 𝑉ts 𝑉tb

⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎝

|𝑑s⟩
|𝑠s⟩
|𝑏s⟩

⎞
⎟⎟⎟⎠

details the discrepancy between the weak and mass eigenstate representations of quark flavour change. In particular,
the matrix element 𝑉ud is of interest due to its major role in the unitarity condition

|𝑉ud|2 + |𝑉us|2 + |𝑉ub|2 = 0.9985(05)
!
= 1,

where |𝑉ud|2 ≈ 0.97373(31) [1, 2]. In the context of nuclear 𝛽 decay, the weak interaction is equally influenced
by the polar and axial vector terms, corresponding to Fermi and Gamow-Teller decay respectively. If we consider
0+ → 0+ superallowed 𝛽 Fermi decays, we can relate 𝑉ud to precisely measurable coupling constants 𝐺𝐹 and 𝐺𝑉
as 𝑉ud = 𝐺𝑉 ∕𝐺𝐹 . We want to compare prediction to experiment while minimizing both sides’ uncertainty.

There is a theoretical correction 𝛿𝐶 , to what was originally thought to be 𝐺𝑉 , related to isospin symmetry breaking
(ISB). Isospin was introduced as a quantum number to treat protons and neutrons as two sides of the same coin. Pro-
tons and neutrons are, however, different with respect to the Coulomb interaction and pion exchange. This means
the symmetry under isospin rotation (going from a proton to a neutron or vice versa) is broken. The probability for
an initial 𝑡 = 1 nuclear state |𝜓i⟩ to transition to a final state with raised or lowered isospin |𝜓f⟩, e.g. via 𝛽 decay, is

|𝑀fi|2 = |||⟨𝜓f|𝑇 ±|𝜓i⟩|||
2
≡ (1 − 𝛿C)

|||⟨𝜓
iso
f |𝑇 ±|𝜓 iso

i ⟩|||
2
= 2(1 − 𝛿C),

where the states labeled |𝜓 iso⟩ (in the isospin limit) respect isospin symmetry and are trivial to work with. Improv-
ing the reliability of IMSRG computational methods in quantifying this 𝛿𝐶 correction was the motivation for this
research. We seek to identify and understand sources of spurious ISB.

In this text, we will cover some preliminary notions in nuclear physics and many-body theory before we discuss the
IMSRG framework. I have tried to keep the sections coherent while including as much as necessary from various
sources (all of which are appropriately cited).
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1 Nuclear Physics

This section takes from various courses on introductory nuclear physics [3–5]. Our first goal will be to understand
the internuclear potential and derive the nuclear shell model from using the mean field or Hartree-Fock approxima-
tion. We will then review the basics of beta decay and isospin.

1.1 Nuclei properties

A nuclide A
Z𝑋𝑁 with atomic number 𝑍 and nucleon number 𝐴 is composed of𝑍 protons and𝑁 = 𝐴−𝑍 neutrons.

The (half-way charge density) radius 𝑅 of most nuclei is represented by

𝑅 ≈ 𝑅0𝐴
1
3 , (1.1)

where 𝑅0 = 1.2 × 10−15 m is an experimentally determined constant. 𝐴 is also the mass number of the nuclide,
since the proton and neutron both approximately have rest mass 1 u ≈ 1.66 × 10−27 kg (atomic mass unit, defined
as 1/12 the mass of 12

6C). All nuclei have approximately the same (nucleon) density since

𝑉 = 4
3
𝜋𝑅3 = 4

3
𝜋𝑅3

0𝐴 ⟹
𝐴
𝑉

= const. (1.2)

Nuclides with same 𝑍 but different 𝐴 are called isotopes. Those with same 𝑁 but different 𝐴 are called isotones
and those with same 𝐴 but different 𝑍 are called isobars.

Nucleons are fermions with spin 𝑠 = 1∕2 so that �̂�2 = ℏ2𝑠(𝑠 + 1) = 3ℏ2∕4 and �̂�𝑧 = ℏ𝑚𝑠 = ±ℏ∕2. Com-
bining the orbital and spin angular momenta of all nucleons composing a nucleus gives the nuclear spin 𝐼 . When
𝐴 is even 𝐼 is an integer, when 𝐴 is odd 𝐼 is a half integer since the orbital angular momenta are integer numbers
and the spin of each nucleon is 1∕2.

1.2 Binding energy and nuclear force

An atom’s mass is not equal to the sum of its constituent nucleons and electrons. This is because the energy required
to bind the nucleus is borrowed from the constituents as mass energy. The mass defect Δ𝑚 associated with an atom
A
ZX with mass 𝑚(𝐴,𝑍) = 𝑚(A

Z X) is

Δ𝑚(𝐴,𝑍) ≡ 𝑍𝑚p +𝑍𝑚e + (𝐴 −𝑍)𝑚n − 𝑚(𝐴,𝑍), (1.3)

where we can usually ignore the electron mass contributions. The binding energy is then

𝐵(𝐴,𝑍) ≡ Δ𝑚(𝐴,𝑍)𝑐2. (1.4)
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1.2 Binding energy and nuclear force

It’s always useful to know 𝑚p ≈ 938.3 MeV/𝑐2 and 𝑚n ≈ 939.6 MeV/𝑐2. Usually Δ𝑚∕𝑚 ≈ 0.01. The binding
energy 𝐵(𝐴,𝑍) is the energy required to split the nucleus into its 𝐴 constitutents. 𝐵 increases with 𝐴 so it’s useful
to refer to the binding energy per nucleon 𝐵∕𝐴.

Fig. 1 Nuclei binding energy per nucleon as a function of the nuclei’s mass number 𝐴 [6].

Looking at Fig. 1, we see that the binding energy per nucleon increases to a maximum of 8.6 MeV around 𝐴 = 60
and then decreases down to about 7.6 MeV. We see sharp peaks in 𝐵∕𝐴 for 4He, 8 Be, 12C, 16O, 20Ne and 24Mg.
These are all multiples of the alpha particle 4

2He2+ (Helium 4 nucleus), making them more stable . We call the
residual strong force between nucleons the nuclear force. From Fig. 2 we see that the nuclear force is

• repulsive at very short ranges (< 1fm), keeping nucleons at average distance 2𝑅0,
• attractive beyond this range and strong enough to overcome any Coulombic repulsion,
• short ranged to the order of 𝑅0, nearest-neighour binding only ⟹ # bonds ∝ 𝐴,
• charge independent, i.e. the same for p-p, n-n and p-n interactions,
• spin dependent and so is the binding energy.

A qualitative explanation of the𝐵∕𝐴 graph comes from the nuclear force. At low𝐴, so for light nuclei, all nucleons
are close enough to one another to experience each other’s attractive nuclear force. Thus, the energy required to
separate the nucleus will increase with 𝐴 as for every nucleon added the original nucleons are now more tightly
bound.
Conversely, at high values of 𝐴, so for heavier nuclei, every nucleon interacts with equally many neighbours since
some are too far away. This is why, as 𝐴 increases for heavy nuclei, 𝐵∕𝐴 does not increase. In fact, it decreases
because simultaneously more protons are being added so that the longer-ranged Coulomb force tends to repel nu-
cleons from each other, making it easier to separate them and thus decreasing 𝐵∕𝐴. This is know as saturation of
the nuclear force.
The Coulombic proton repulsion does not affect 𝐵∕𝐴 for smaller 𝐴 because the nuclear energy is about 50 times
stronger at this distance (typical inter-nucleon distance).
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1 Nuclear Physics
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Fig. 2 Sketch of an internucleon potential with repulsive core and saturation [7].

Of the approximately 2500 known nuclei, only 270 are stable with respect to nuclear decay. The heaviest stable
nuclide with 𝑍 = 𝑁 is 40

20Ca and the heaviest of all stable nuclides is 208
82Pb. Stable nuclei can only be found in

the valley of stability, between 𝑁 = 𝑍 and 𝑁 = 2𝑍. As 𝐴 increases, it’s more likely that neutrons ‘stick’ to the
nucleus since they experience no Coulombic repuslsion, in contrast with protons.

To summarise some key points about the 𝐵∕𝐴 vs 𝐴 plot:

• Rising trend for low 𝐴 due to nuclear bonds not being fully saturated.
• Increased stability for even-even nuclei due to pairing energy (consequence of 1.4).
• Slow decrease as 𝐴 increases due to increasing effect of unsaturated Coulombic proton-proton repulsion.

1.3 Shell model

Analogous to the electronic shell model for atoms, the nuclear shell model understands nucleons’ states as assign-
ments to certain energy levels, according to the quantum numbers determining the energy of the nucleon

𝐸𝑛𝓁 = ℏ𝜔(2𝑛 + 𝓁 + 3
2
) − 𝑉 ′

0 . (1.5)

These energies are those of a three-dimensional harmonic oscillator in a well of depth 𝑉 ′
0 (by construction). The

shell model accurately predicts the magic numbers of nucleons, which corresponding to energetically stable con-
figurations of nuclei. This section covers the development of the model as outlined in [8]. To construct this model
we start with the Hamiltonian for a nucleus,

�̂� =
∑
𝑖

𝑷 2
𝑖

2𝑚𝑖
+
∑
𝑖<𝑗

𝑉nuc(|�̂�𝑖 − �̂�𝑗|) +
protons∑
𝑖<𝑗

𝑒2

|�̂�𝑖 − �̂�𝑗|
. (1.6)
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1.3 Shell model

First, we treat the averaged field affecting each nucleon, whereby we can write the Hamiltonian as

�̂� ≡
neutrons∑

𝑗
�̂�n
𝑗 +

protons∑
𝑘

�̂�p
𝑘 , (1.7)

�̂�n
𝑗 =

𝑷 2
𝑗

2𝑚n
+ 𝑉 𝑗

nuc(|�̂�𝑗|), �̂�p
𝑘 =

𝑷 2
𝑘

2𝑚p
+ 𝑉 𝑘

nuc(|�̂�𝑘|) + 𝑉 𝑘
C (|�̂�𝑘|), (1.8)

where �̂�n
𝑗 is the Hamiltonian for the neutrons with mean field

𝑉 𝑗
nuc =

∑
𝑖<𝑗

𝑉nuc(|�̂�𝑖 − �̂�𝑗|), (1.9)

and �̂�p
𝑘 is the Hamiltonian for the proton with mean field

𝑉 𝑘
nuc + 𝑉

𝑘
C =

∑
𝑖<𝑘

𝑉nuc(|�̂�𝑖 − �̂�𝑘|) +
protons∑
𝑖<𝑘

𝑉C(|�̂�𝑖 − ̂(𝑐𝑋𝑘|). (1.10)

These mean fields (1.9) & (1.10) are the potentials felt by each nucleon as a result of interacting with every other
nucleon. In reality the fields affecting each nucleon depend on the others’ position, so are not fixed.
We approximate the nucleon-nucleon interaction (see Fig. 2) to be a smooth well of depth 𝑉0, determined by
internuclear separation 𝑟, with an oscillator part1

𝑉nuc(𝑟) ≈ −𝑉0(1 −
𝑟2

𝑅2 ), (1.11)

where 𝑅 ≈ 1.25𝐴−1∕3 is the familiar radius of a nucleus with mass number 𝐴 (1.1). In the case of protons, which
are charged, one must also add to the Hamiltonian a Coulomb interaction term, where 𝑍 is the atomic number

𝑉C(𝑟) ≈
(𝑍 − 1)𝑒2

𝑅

[3
2
− 𝑟2

2𝑅2

]
. (1.12)

This is the Coulombic potential of a uniformly charged sphere, when standing inside the sphere. Of course each
proton only sees 𝑍 − 1 other protons. This means nucleons experience an effective or mean field

𝑉eff(𝑟) = 𝑟2
( 𝑉0
𝑅2 − (𝑍 − 1)𝑒2

2𝑅2

)
− 𝑉0 +

3
2
(𝑍 − 1)𝑒2

𝑅
(1.13)

≡ 1
2
𝑚𝜔2𝑟2 − 𝑉 ′

0 ,

where the Coulombic interaction is not included in the neutron case.

1Another valid description of 𝑉nuc is the Woods-Saxon potential [9].
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1 Nuclear Physics

Note the square well 𝑉 ′
0 is shallower for protons and we define the oscillator frequencies as

𝜔2 ≡

{[
2𝑉0 − (𝑍 − 1)𝑒2

]
∕𝑚p𝑅2 for protons,

2𝑉0∕𝑚n𝑅2 for neutrons. (1.14)

The energy levels of the nucleus are approximated as those of a 3D harmonic oscillator inside a well of depth 𝑉 ′
0 .

𝐸𝑁 ≈ ℏ𝜔(𝑁 + 3
2
) − 𝑉 ′

0 . (1.15)

Had we solved the Schroödinger equation with the full radial equation, where the centrifugal term ℏ2

2𝑚
𝑙(𝑙+1)
𝑟2

must
appear [10], the energies would be labeled by radial number 𝑛 and orbital number 𝓁. Equating them to the ones
above gives 𝑁 = 2𝑛+ 𝓁 where we know 𝑛 = 0, 1, ..., 𝓁 = 0, 1, ... and 𝑚𝓁 = −𝓁, ...𝓁 in integer steps. In accordance
with spectroscopic notation of the atomic orbitals, we denote 𝓁 = 0, 1, 2, 3, ... as s, p, d, f and so on.
The degeneracy of 𝐸𝑁 is ∑

𝓁=𝑁,𝑁−2,...
(2𝑙 + 1) = 1

2
(𝑁 + 1)(𝑁 + 2) (1.16)

without including spin as a quantum number, and (𝑁 + 1)(𝑁 + 2) if spin is included.

This model accurately predicts the preferred cumulative occupation numbers (magic numbers) of the 𝑁 = 0, 1
and 2 shells but fails for higher 𝑁 . This is because the present nucleon Hamiltonians ignore a crucial detail.

Spin-orbit correction

The potential associated with spin-orbit coupling in the nuclear context is
1
ℏ2
𝑉SO�̂� ⋅ �̂�. (1.17)

Working in the eigenbasis of 𝐽 2 = �̂�2 + �̂�2 + 2�̂� ⋅ �̂� and �̂�2 and �̂�2 we get

⟨�̂� ⋅ �̂�⟩ = ℏ2

2
[𝑗(𝑗 + 1) − 𝓁(𝓁 + 1) − 𝑠(𝑠 + 1)]. (1.18)

Noting that 𝑗 = |𝓁 − 𝑠|, ...,𝓁 + 𝑠 in integer steps and 𝑠 = 1
2 , we have 𝑗 = 𝓁 ± 1

2 so that

𝑉eff(𝑟) →
{
𝑉eff(𝑟) +

𝓁
2𝑉SO(𝑟) 𝑗 = 𝓁 + 1∕2,

𝑉eff(𝑟) −
𝓁+1
2 𝑉SO(𝑟) 𝑗 = 𝓁 − 1∕2.

(1.19)

We can choose 𝑉SO(𝑟) to be negative. The spatial dependence is not that important, what matters is that the previ-
ously degenerate 𝑛𝓁 states are now split into 𝑛𝓁𝑗 states. Those with 𝓁 and 𝑠 aligned are have higher energies than
those with them anti-aligned. The energy difference is Δ𝐸𝑛𝓁 = ℏ2

2 (2𝓁 + 1) and these two states form a doublet.
Using (1.16) and including spin, 𝑁 = 0, 1, 2 had degeneracies (possible number of states occupied for each 𝑁) of
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1.3 Shell model
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Fig. 3 Nuclear shell model
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1 Nuclear Physics

2,6 and 12 respectively. According to this simplified model, if all these shells were fully occupied, the cumulative
occupancy would be 20. If we thought the next magic number would appear at𝑁 = 3, in agreement with the model
without spin-orbit coupling, then the next magic number should be 40 since 𝑁 = 3 has 20 possible sublevels. Ex-
periment tells us the next magic number is in fact 28. Why is this?

To find the new predicted magic numbers, let us look at the 0f7∕2 sublevel (𝑛 = 0, 𝓁 = 3, 𝑗 = 7∕2). This or-
bital has energy ‘pushed down’ since the orbital and spin angular momenta of nucleons occupying this state are
aligned. In fact, its energy is so low that it breaks off from the 𝑁 = 3 shell and forms a shell of its own (Fig. 3).
If you remember your angular momentum rules, you will know that 𝑚𝑗 can take 2𝑗 + 1 values, so 0f7∕2 can be
occupied by at most 27

2 + 1 = 8 nucleons. Adding this to the cumulative occupancy of the first three 𝑁 shells, we
have retrieved the correct magic number. You can repeat this for 0g9∕2 which accounts for the magic number 50
instead of 40. �� ��2, 8, 20, 28, 50, ...
Note that the shell model is almost the same for the proton and neutron cases. The specific ordering of shells is
determined by the various model parameters 𝑉0, 𝑉SO, 𝑚n,p, 𝑅. Since 𝜔 depends on which nucleon type we are
considering (1.14), the spacing between energy levels is not the same in both cases. In practice, we set both ℏ𝜔 to
the same value.

1.4 Nuclear spin and parity

In the extreme shell model, we assume that only the last unpaired nucleons dictate the properties of the nucleus.
A better approximation would be to consider all nucleons above a filled shell as contributors. These are valence
nucleons. Properties which are predicted by characteristics of valence nucleons include

• magnetic dipole moment,
• electric quadrupole moment,
• excited states,
• spin-parity.

In this subsection, we will briefly cover spin-parity continuing with [8]. For a more detailed discussion of why
certain states are not allowed (for example odd 𝐼) see Krane [4, Ch. 3.4]. The spatial parity of a singe nucleon
wavefunction is

𝜓𝑛𝓁𝑗(𝑥) → 𝜓𝑛𝓁𝑗(−𝑥) = (−1)𝓁𝜓𝑛𝓁𝑗(𝑥). (1.20)
As proton and neutron shells are filled, the nucleons of each type become paired off yielding 𝑠 = |𝑠1 − 𝑠2| = 0 by
the Pauli exclusion principle. This is because the 𝑠 = 1 triplet is forbidden since the wavefunctions’ spatial part is
symmetric, since each nucleon’s spatial wavefunction has parity (−1)𝓁 and they reside in the same 𝓁 orbital. (By
separation of variables (1.7), we can write the combined wavefunction as the product of single-nucleon wavefunc-
tions.) There is a pairing force which lowers the energy of systems with paired off nucleons.
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1.4 Nuclear spin and parity

Since nucleons get paired off, the total spin and parity of the nucleus is determined by the last unpaired nucle-
ons, which necessarily reside in the highest energy levels. A nucleus can have either one valence proton, one
valence neutron, or one of both unpaired.
The parity of the nucleusΠ is the product of the parity of each valence nucleon, e.g. (−1)𝓁p+𝓁n if there is one valence
proton and one valence neutron. Let’s look at different cases for 𝐴 even or odd. We will label the spin-parity of a
nucleus/nuclide with 𝐼Π where Π = ± and 𝐼 is the nuclear spin which is either 0, a positive integer or a positive
half-integer.

𝐴 odd oe/eo

An odd-even nucleus as an odd number of neutrons and an even number of protons. For an even-odd nucleus, it’s
the other way around. In both cases, 𝐴 is odd. This means the nuclear spin 𝐼 must be a half integer. This is because
there will always be an unpaired nucleon which resides in a state 𝑛𝓁𝑗 and we have 𝐼 = 𝑗 which is a positive half
integer.
For example, take 15

8O; there is an unpaired neutron in 0p1∕2, so the overall parity is (−1)𝓁n = −1. The nuclear spin
is simply 𝑗 of the valence nucleon, 𝐼 = 𝑗 = 1

2 . Therefore 15
8O has spin-parity 1

2
−. We can find the spin-parity of

any odd-𝐴 nuclide

• 17
8O has 1n0 in 0d5∕2 ⟹ 5

2
+ ,

• 123
51Sb has 1p+ in 0g7∕2 ⟹ 7

2
+ ,

• 29
14Si has 1n0 in 1s1∕2 ⟹ 1

2
+ .

As with most rules, there are some exceptions to how nucleons fill levels

• 121
51Sb has 1p+ in 0d5∕2 (instead of 0g7∕2) ⟹ 5

2
+ ,

• 147
62Sn has 1p+ in 1f7∕2 (instead of 0h9∕2) ⟹ 7

2
− .

𝐴 even

If ee, all nucleons are paired off, meaning 𝐼 = 0 and Π = + always ⟹ 0+.
If oo, there are only five stable nuclides; 2H, 6Li, 10B, 14N and 208

83Bi. Their spins are more complicated to calculate.
Recall the nuclear spin can take values 𝐼 = |𝑗p + 𝑗n|, ..., 𝑗p + 𝑗n.

• Nuclei tend to have lowest spin ⟹ 𝐼 ∼ |𝑗1 + 𝑗2|.
• Valence nucleon spins tend to align ⟹ 𝐼 ∈ ℤ.

Manipulating nuclear spin is the basis for magnetic resonance imagery (MRI).
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1 Nuclear Physics

1.5 Beta decay

Nuclides undergo beta decay when energetically favourable, i.e. when trending towards stable isobars (nuclides
with same 𝐴). There are two types of beta decay [4];

𝛽− ∶ n0 → p+ + e− + 𝜈e, 𝛽+ ∶ p+ → n0 + e+ + 𝜈e. (1.21)

We often group electron capture with 𝛽+ decay as the reactions are so similar in nature.

p0 + e− → n0 + +𝜈e. (1.22)

After 𝛽−, 𝛽+ or electron capture, the mass number 𝐴 is unchanged since 𝑍 → 𝑍 ± 1 and 𝑁 → 𝑁 ∓ 1 so that
𝐴 = 𝑍 +𝑁 → 𝐴. Fermi allowed beta decays preserve the spin-parity of the parent nuclide. In particular, super-
allowed beta decays preserve the quantum mechanical wave-function up to the exchange of a neutron for a proton
or vice versa. This means the proton and neutron Fermi energies are nearly identical [5].

1.6 Isospin

Motivated by the similarity of the proton and neutron with regard to mass and their relationship with the nuclear
force, a quantity was introduced by Heisenberg in 1932 to treat them as the same particle, the nucleon, with two
orientations of isospin 𝑡 = 1∕2 [4, 11]. This paper will follow the nuclear physics convention of assigning isospin
up to the neutron (𝑡𝑧 = +1∕2) and down to the proton (𝑡𝑧 = −1∕2). This choice is to ensure most nuclides have
positive isospin projection 𝑇 𝑧, since most nuclides have more neutrons than protons. So we assign

n0 ↑ (𝑡𝑧 = +1
2 ) isospin up , p+ ↓ (𝑡𝑧 = −1

2 ) isospin down.

We can thus think of isospin rotation 𝑇 ± as beta decay. Isospin has all the familiar angular momentum properties

𝑇 2|𝑡⟩ = 𝑡(𝑡 + 1)|𝑡⟩, 𝑇 ±|𝑡, 𝑡𝑧⟩ =
√
𝑡(𝑡 + 1) − 𝑡𝑧(𝑡𝑧 ± 1)|𝑡, 𝑡𝑧 ± 1⟩, ...

Later on, we will be focusing on 14O (see Fig. 4) which has isospin 𝑡 = 1. Let’s see why that is.

p+ n0

0s1/2 0s1/2

0p3/2

0p1/2

0d5/2

Fig. 4 The nuclear shell configuration of the ground state of 14O.
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1.6 Isospin

If we acted on the |14O⟩ ground state with 𝑇 +, this would have the effect of raising the isospin of each constitutent
nucleon by 1 since 𝑻 is the vector sum of the constituents’ isospin, only acting in their Hilbert space.

𝑇 + =
nucleons∑

𝑖
𝑇 +
𝑖 =

nucleons∑
𝑖

𝑖th nucleon
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝐼 ⊗⋯⊗ 𝑇 +

𝑖 ⊗⋯⊗ 𝐼. (1.23)

Every term in the sum acting on neutrons will vanish since there is no 𝑡𝑧 = 3∕2 in 𝑡 = 1∕2 representation. Further-
more, every term in the sum acting on protons which occupy states symmetrically occupied by neutrons will vanish
since we cannot create a second fermion in the resulting state.
The only non-zero terms in 𝑇 +|14O⟩ concern the two protons in 0p1∕2. One application of 𝑇 + on |14O⟩ creates a
superposition of states where either one of the protons is a neutron. A second application of 𝑇 + changes |14O⟩ to
|14C⟩ with both protons changed to neutrons. A third application would then yield 0.
Similarly, 𝑇 −|14O⟩ = 0. We have thus confined |14O⟩ to the ‘bottom’ triplet state 𝑡 = 1, 𝑡𝑧 = −1.

0

|𝑡 = 1 𝑡𝑧 = +1⟩
|𝑡 = 1 𝑡𝑧 = 0⟩

|14O⟩ ∼ |𝑡 = 1 𝑡𝑧 = −1⟩
0

𝑇 +

𝑇 +

𝑇 +

𝑇 −

The matrix elements of 𝑇 2 acting on a two 𝑡 = 1∕2 particle Hilbert space can be found by looking at

𝑇 2 = (𝑇 𝑧)2 + 1
2
(
𝑇 +𝑇 − + 𝑇 −𝑇 +) = (𝑇 𝑧)2 + 𝐼 ⊗ 𝐼 + 𝑇 +

1 ⊗ 𝑇 −
2 + 𝑇 −

1 ⊗ 𝑇 +
2 (1.24)

= (𝑇 𝑧1 )
2 ⊗ 𝐼 + 𝐼 ⊗ (𝑇 𝑧2 )

2 + 𝐼 ⊗ 𝐼 + 2𝑇 𝑧1 ⊗ 𝑇 𝑧2 + 𝑇 +
1 ⊗ 𝑇 −

2 + 𝑇 −
1 ⊗ 𝑇 +

2

=
(
(𝑇 𝑧1 )

2 + 1
2
𝐼
)
⊗ 𝐼 + 𝐼 ⊗

(
(𝑇 𝑧2 )

2 + 1
2
𝐼
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
One-particle terms

+2𝑇 𝑧1 ⊗ 𝑇 𝑧2 + 𝑇 +
1 ⊗ 𝑇 −

2 + 𝑇 −
1 ⊗ 𝑇 +

2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Two-particle terms

.

By taking the one-particle or two-particle matrix elements we can find

𝑇 2
𝑖𝑗 =

3
4
𝛿𝑖𝑗 , (1.25)

𝑇 2
𝑖𝑗𝑘𝑙 =

1
2
𝛿𝑖𝑘 ⊗ 𝛿𝑗𝑙

⏟⏞⏞⏟⏞⏞⏟
nucleon type not changed

+ 𝛿𝑖𝑘 ⊗ 𝛿𝑗𝑙
⏟⏞⏟⏞⏟

p+ ↔ 𝑛0

,

where the overlined state 𝑎 is identical to 𝑎 but with the opposite 𝑡𝑧.
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2 Quantum Many-Body Theory

This section will mainly follow Shavitt and Bartlett [12] and [13]. When considering quantum mechanical problems
with numerous independent particles, i.e. many-body problems, second quantisation provides a method for repre-
senting operators and wavefunctions compactly, and thereby manipulating them more efficiently. This is pertinent
to ab initio nuclear theory, where a quantitative description of a collection of nucleons is desired.

2.1 Second quantisation and Fock space

We assume the existence of a one-particle basis of wavefunctions {𝜙𝑖} comprised of spinorbitals 𝜙𝑖, such that the
basis is orthonormal. The unspecified number of basis functions generate Hilbert spaces for 𝑁 particles, for which
basis states are tensor products of 𝑁 spinorbital states (usually Hartree-Fock wavefunctions).
Because we will be dealing with nucleons, and hence fermionic states, we further assume the 𝑁-particle states are
anti-symmetrised Slater determinants made up of the 𝜙𝑖 functions.

Consider the representation of a normalised Slater determinant (SD) wavefunction for 𝑁 particles

|𝜙𝑖𝜙𝑗 …𝜙𝑧⟩ = |𝑖𝑗… 𝑧⟩ = 1√
𝑁!

|||||

𝜙𝑖(𝑥1) 𝜙𝑗 (𝑥1) ... 𝜙𝑧(𝑥1)
𝜙𝑖(𝑥2) ... ... 𝜙𝑧(𝑥2)

⋮ ⋮
𝜙𝑖(𝑥𝑁 ) ... ... 𝜙𝑧(𝑥𝑁 )

|||||
. (2.1)

We define the occupation number of the 𝑖th spinorbital in the SD as

𝑛𝑖 =

{
0 if 𝜙𝑖 not in the SD,
1 if 𝜙𝑖 is in the SD. (2.2)

The SD itself, and operators acting on it, are represented in terms of creation and annihilation operators �̂�†𝑖 , �̂�𝑖 or
𝑖†, 𝑖 if there is no ambiguity in notation. They are defined by their action on the SD vacuum |0⟩

�̂�𝑖|0⟩ = 0, �̂�†𝑧⋯ �̂�†𝑖 |0⟩ = |𝑖...𝑧⟩. (2.3)

In order to comply with the anti-symmetry of states with respect to an exchange of fermions, namely |𝑝𝑞⟩ = −|𝑞𝑝⟩
from (2.1), these operators satisfy

[
�̂�𝑝, �̂�

†
𝑞
]
+ = 𝛿𝑝𝑞, (2.4)

[
�̂�𝑝, �̂�𝑞

]
+ =

[
�̂�†𝑝, �̂�

†
𝑞
]
+ = 0,
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2.1 Second quantisation and Fock space

where [𝐴,𝐵]+ = 𝐴𝐵+𝐵𝐴 is the anti-commutator. In particular, �̂�𝑘|𝑖… 𝑘… 𝑧⟩ and �̂�†𝑘|𝑖… 𝑧⟩ are found using (2.3)
& (2.4). We say that the creation operator �̂�†𝑝 creates a particle in the single-particle state 𝜙𝑝 while the annihilation
operator �̂�𝑝 destroys it. This is a statement that for all 𝑁 ∈ ℕ, the 𝑁-body wavefunction can be generated by an
application of 𝑁 independent operators to a unique vacuum state. Based on (2.3) & (2.4), a definition of the Fock
space  can be laid out:

• 𝑁 ≡ span{|𝑖1...𝑖𝑁⟩ = �̂�†𝑖𝑁 ⋯ �̂�†𝑖1|0⟩
} considering all sets of 𝑁 states in a basis 𝐵 = {𝜙𝑖}.

•  ≡
⨁

𝑁∈ℕ 𝑁 where 𝑁 is still the number of particles occupying non-vacuum states.
• |𝜙⟩ ∈  ⟹ |𝜙⟩ = ∑

𝑖∈𝐵 𝑓𝑖|𝑖⟩ +
∑
𝑖,𝑗∈𝐵 𝑔𝑖𝑗|𝑖𝑗⟩ +

∑
𝑖,𝑗,𝑘∈𝐵 ℎ𝑖𝑗𝑘|𝑖𝑗𝑘⟩ + ... .

F2 F1 F0 0FN ...

a a aa

a†a†a†

Our immediate goal is to express many-body operators in terms of creation and annihilation operators. To this end,
it is convenient to expand the operators in representations of eigenstates of their single-particle counterpart and then
transform to an arbitrary basis. So, we have to specify how to change between single particle bases, {𝜙𝑖} → {�̃�𝑖}
and how this affects the ladder operators algebra {�̂�𝑖}.

For complete sets of states {𝜙𝑖} and {�̃�𝑖}, 𝐼 =
∑
𝑖|𝑖⟩⟨𝑖| =

∑
𝑖|𝑖⟩⟨𝑖| so we get, by action on the vacuum state

�̂�†𝑖 =
∑
𝑖

⟨𝑖|𝑖⟩ �̂�†𝑖 ⟹ �̂�𝑖 =
∑
𝑖

⟨𝑖|𝑖⟩ �̂�𝑖. (2.5)

Alternatively, if one set of states is continuous, e.g. the position basis |𝑥⟩, 𝐼 = ∫ 𝑑𝑥|𝑥⟩⟨𝑥| so that

�̂�𝑖 = ∫ 𝑑𝑥 ⟨𝑖|𝑥⟩ �̂�(𝑥), �̂�(𝑥) =
∑
𝑖

⟨𝑥|𝑖⟩ �̂�𝑖. (2.6)

In the case of a finite position space, for example 𝑥 ∈ [0, 𝐿], the momentum is discretised and the position and
momentum bases are related by Fourier transform [14, pg. 103].

Symmetric one-body (1B) operators ̂1 acting in an 𝑁-particle Hilbert space 𝑁 take the form

̂1 =
𝑁∑
𝑖=1

�̂�𝑖, (2.7)

where �̂�𝑖 =
𝑖th position

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝐼 ⊗⋯⊗ �̂�𝑖⊗⋯⊗ 𝐼 acts exclusively in the 𝑖th particle’s Hilbert space. For example, the total kinetic

energy operator 𝑇 =
∑
𝑖 𝑷 2

𝑖 ∕2𝑚𝑖 and the total spin operator �̂� =
∑
𝑖 �̂�𝑖.
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2 Quantum Many-Body Theory

Define the (occupation) number operator 𝑁𝜆 ≡ �̂�†𝜆�̂�𝜆 such that

𝑁𝜆(�̂�
†
𝜆)
𝑛|0⟩ = 𝑛(�̂�†𝜆)

𝑛|0⟩, or 𝑁𝜆|𝜆1...𝜆𝑁⟩ = 𝑛𝜆|𝜆1...𝜆𝑁⟩. (2.8)

This can be seen using the relation �̂�𝜆�̂�†𝜆𝑁 = 𝛿𝜆𝜆𝑁 − 𝑎†𝜆𝑁 �̂�𝜆, so

(�̂�†𝜆�̂�𝜆)�̂�
†
𝜆𝑁

⋯ �̂�†𝜆1|0⟩ = 𝛿𝜆𝜆𝑁 |𝜆1...𝜆𝑁⟩ + 𝛿𝜆𝜆𝑁−1
|𝜆1...𝜆𝑁⟩ + ... + 𝛿𝜆𝜆1|𝜆1...𝜆𝑁⟩ (2.9)

+ (−1)𝑁 �̂�†𝜆�̂�
†
𝜆𝑁

⋯ �̂�†𝜆1 �̂�𝜆|0⟩

= (
𝑁∑
𝑖=1

𝛿𝜆𝜆𝑖)|𝜆1...𝜆𝑁⟩ = 𝑛𝜆|𝜆1...𝜆𝑁⟩.

Consider ̂1 with single-particle equivalent �̂� where |𝜆𝑖⟩ are the orthonormal eigenvectors of �̂� with eigenvalues 𝑜𝑖.

⟨𝜆′1...𝜆′𝑁 |̂1|𝜆1...𝜆𝑁⟩ = ⟨𝜆′1...𝜆′𝑁 |
𝑁∑
𝑖=1

𝑜𝜆𝑖|𝜆1...𝜆𝑁⟩ = ⟨𝜆′1...𝜆′𝑁 |
∑
𝜆
𝑛𝜆𝑜𝜆|𝜆1...𝜆𝑁⟩, (2.10)

which holds for all sets of 𝑁 states {𝜆𝑖}, We obtain the second quantisation representation

̂1 =
∑
𝜆
𝑜𝜆𝑁𝜆 =

∑
𝜆
⟨𝜆|�̂�|𝜆⟩�̂�†𝜆�̂�𝜆. (2.11)

By transforming to a general basis {𝜇} using (2.5) (not necessarily eigenbasis of �̂�), we get

̂1 =
∑
𝜇𝜈

⟨𝜇|�̂�|𝜈⟩�̂�†𝜇�̂�𝜈 . (2.12)

Formally, ̂1 scatters a particle from state |𝜈⟩ to a state |𝜇⟩with probability |⟨𝜇|�̂�|𝜈⟩|2. For example take a collection
of spin-1/2 particles, then the 𝑖th particle’s spin operator in the spin state basis {↑, ↓} can be represented with the
Pauli matrices

�̂�𝑖 =
ℏ
2
𝝈 ⟹ �̂�𝑧𝑖 =

ℏ
2
( 1 0
0 −1

)
, �̂�+𝑖 = �̂�𝑥𝑖 + �̂�

𝑦
𝑖 = ℏ

( 0 1
0 0

)
. (2.13)

This means the total spin operator of a collection of fermions can be rewritten [13]

�̂�
(2.12)
=

∑
𝜆𝛼𝛼′

�̂�†𝜆𝛼 �̂�𝛼𝛼′ �̂�𝜆𝛼′ ⟹ �̂�𝑧 = ℏ
2
∑
𝜆
𝑁𝜆↑ −𝑁𝜆↓, �̂�+ = ℏ

∑
𝜆
�̂�†𝜆↑�̂�𝜆↓, (2.14)

where 𝛼, 𝛼′ can take values ↑, ↓ and 𝜆 represents the rest of the quantum numbers describing the system (e.g. po-
sition, orbital angular momentum). Clearly �̂�𝑧 counts the net spin projection and �̂�+ destroys particles in the
spin-down before subsequently creating them in the spin-up state.
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2.2 Particle-hole formulation

Similarly, we can derive the second quantisation representation of symmetric two-nucleon operators

̂2 =
𝑁∑
𝜇<𝜈

�̂�𝜇𝜈 =
1
2

𝑁∑
𝜇≠𝜈

�̂�𝜇𝜈 = ... = 1
2
∑
𝑝𝑞𝑟𝑠

⟨𝑝𝑞|�̂�|𝑟𝑠⟩�̂�†𝑝�̂�†𝑞 �̂�𝑠�̂�𝑟. (2.15)

For example, if we consider the Hamiltonian describing a nucleus (and ignore the 3𝑁 force), we could write it as a
sum of the free nucleon Hamiltonians ℎ̂𝑖 = 𝑷 2

𝑖 ∕2𝑚𝑖 and the interaction terms �̂�𝑖𝑗 . Here, we sum over all nucleons

�̂� =
𝑁∑
𝑖
ℎ̂𝑖 +

1
2

𝑁∑
𝑖≠𝑗

�̂�𝑖𝑗 , (2.16)

or, in second quantised form, where the summation indices now refer to a basis of single nucleon spinorbitals

�̂� =
∑
𝑝𝑞
ℎ𝑝𝑞 �̂�

†𝑞 + 1
2
∑
𝑝𝑞𝑟𝑠

𝑣𝑝𝑞𝑟𝑠�̂�
†𝑞†�̂��̂�. (2.17)

2.2 Particle-hole formulation

Because nucleons fill up energy levels progressively (see 1.3), it will be convenient to define a reference state |Φ0⟩
in which the nucleus is in its ground state. This means there is an energy below which all proton states are filled,
and an equivalent energy for neutrons. We can think of these as Fermi energies and thus think of our fixed reference
state |Φ0⟩ as the Fermi vacuum. All spinorbitals which are occupied/filled in the reference are called hole states

Fig. 5 An 14O reference |Φ0⟩ being excited to a pos-
sible double excitation |Φ𝑎𝑏

𝑖𝑗 ⟩. The 0p1∕2 state
was originally a hole state for protons but a
particle state for neutrons. Only excitations
which conserve spin-parity 𝐼Π are physically
allowed.

p+ n0

0s1/2 0s1/2

0p3/2

0p1/2

0d5/2

and, conversely, those which are vacant/empty in the reference are called particle states. From now on, to indicate
hole states we will use indices 𝑖, 𝑗, 𝑘, ....and particle states will be labelled with 𝑎, 𝑏, 𝑐, .... To refer to any generic
spinorbital, we will use 𝑝, 𝑞, 𝑟, 𝑠, .... Reflecting how it would be unphysical to create a particle in an occupied
fermionic state, or destroy a particle in an empty one, we can use the commutation relations to show

𝑖†|Φ0⟩ = �̂�|Φ0⟩ = 0, ⟨Φ0|𝑖 = ⟨Φ0|�̂�† = 0. (2.18)

Because �̂�†𝑖 has the effect of ‘displacing’ one particle, it is the basis for one-body (1B) operators. Similarly, �̂�†�̂�†𝑗𝑖
is a 2B operator and so on. This is known as the operator’s particle rank.
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2 Quantum Many-Body Theory

We define other SDs relative to the reference by super/subscripting the change

|Φ𝑎
𝑖 ⟩ ≡ �̂�†𝑖|Φ0⟩ (single excitation), (2.19)

|Φ𝑎𝑏
𝑖𝑗 ⟩ ≡ �̂�†�̂�†𝑗𝑖|Φ0⟩ (double excitation),

|Φ𝑖⟩ ≡ 𝑖|Φ0⟩ (nucleon removal),
|Φ𝑎⟩ ≡ �̂�†|Φ0⟩ (nucleon attachment).

The commutation relations (2.4) also mean that 𝑖𝑗 = −𝑗𝑖 so that

|Φ𝑎𝑏
𝑖𝑗 ⟩ = −|Φ𝑎𝑏

𝑗𝑖 ⟩ = |Φ𝑏𝑎
𝑗𝑖 ⟩ = −|Φ𝑏𝑎

𝑖𝑗 ⟩. (2.20)

Together with (2.19), they lead to orthonormality of this basis of SDs, i.e.

⟨Φ0|Φ𝑎
𝑖 ⟩ = ⟨Φ0|Φ𝑎𝑏

𝑖𝑗 ⟩ = … = 0, ⟨Φ𝑎′
𝑖′ |Φ𝑎

𝑖 ⟩ = 𝛿𝑖𝑖′𝛿𝑎𝑎′ , … (2.21)

The energy of some reference state |Φ0⟩ = |𝑖𝑗𝑘...𝑛⟩ can be computed by using (2.17)

𝐸0 = ⟨Φ0|�̂�|Φ0⟩ (2.22)
=
∑
𝑝𝑞
ℎ𝑝𝑞⟨𝑖𝑗𝑘...𝑛|�̂�†𝑞|𝑖𝑗𝑘...𝑛⟩ + 1

2
∑
𝑝𝑞𝑟𝑠

𝑣𝑝𝑞𝑟𝑠⟨𝑖𝑗𝑘...𝑛|�̂�†𝑞†�̂��̂�|𝑖𝑗𝑘...𝑛⟩

=
∑
𝑙
ℎ𝑙𝑙⟨𝑖𝑗𝑘...𝑛|𝑙†𝑙|𝑖𝑗𝑘...𝑛⟩ + 1

2
∑
𝑙≠𝑚

𝑣𝑙𝑚𝑚𝑙⟨𝑖𝑗𝑘...𝑛|𝑙†�̂�†�̂�𝑙|𝑖𝑗𝑘...𝑛⟩

+ 1
2
∑
𝑙≠𝑚

𝑣𝑙𝑚𝑙𝑚⟨𝑖𝑗𝑘...𝑛|𝑙†�̂�†𝑙�̂�|𝑖𝑗𝑘...𝑛⟩.

We get to this step for the first term by noticing that 𝑝 ≠ 𝑞 leads to zero by orthonormality, and that only hole states
have non-vanishing occupation numbers . For the second term, we employ similar arguments but we also have two
distinct ways of ending up with the same bra and ket by left action of the creation operators and right action of
the annihilation operators respectively. The cases are when �̂� and �̂� are the same or when �̂� and 𝑞 are the same.
(Of course, we sum over 𝑙 ≠ 𝑚 since a nucleon state cannot be destroyed twice.) Since we are summing over all
spinorbitals, both cases appear. Noticing that 𝑙†𝑙|Φ0⟩ = |Φ0⟩ by definition of a hole state, and that 𝑙�̂�𝑙�̂� = −𝑙�̂��̂�𝑙,

𝐸0 =
∑
𝑙
ℎ𝑙𝑙 +

1
2
∑
𝑙≠𝑚

⟨𝑙𝑚|�̂�|𝑙𝑚⟩A. (2.23)

We denote the anti-symmetrised matrix element by2 ⟨𝑙𝑚|�̂�|𝑙𝑚⟩A ≡ ⟨𝑙𝑚|�̂�|𝑙𝑚⟩ − ⟨𝑙𝑚|�̂�|𝑚𝑙⟩. All operator matrix
elements will be anti-symmetrised going forward (except of course for single-particle matrix elements).

2Sometimes also written as ⟨𝑙𝑚||𝑙𝑚⟩ when referring to the Hamiltonian two-body potential.
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2.3 Normal ordering

2.3 Normal ordering

To make use of our starting point, the reference state, we have found a compact way to write SDs by treating them
as deviations. We will now work toward accomplishing the same thing for second-quantised operators.
A string of creation and/or annihilation operators is said to be normal ordered with respect to a reference state if
all operators which destroy the state (e.g. 𝑖†, �̂�) are to the right of all those which do not (e.g. 𝑖, �̂�†). In the case of
the physical vacuum state |0⟩, a string of operators would be normal ordered if all annihilation operators were to
the right. We denote a string of normal ordered operators by curly brackets3 {⋯}. According to Wick’s theorem,
we could equivalently define normal ordering with respect to |Φ0⟩ as

{�̂�†𝑞†⋯ �̂��̂�} ≡ �̂�†𝑞†⋯ �̂��̂� − ⟨Φ0|�̂�†𝑞†⋯ �̂��̂�|Φ0⟩. (2.24)

This would of course imply ⟨Φ0|{�̂�†𝑞†⋯ �̂��̂�}|Φ0⟩ = 0 as desired. The reference state expectation value of a pair
of creation and/or annihilation operators is called a (Wick) contraction

�̂�†𝑞 ≡ ⟨Φ0|�̂�†𝑞|Φ0⟩ = �̂�†𝑞 − {�̂�†𝑞}. (2.25)

The only non-zero contractions are then 𝑖†𝑗 = 𝛿𝑖𝑗 and �̂��̂�† = 𝛿𝑎𝑏.
We are now ready to write operators relative to the reference. For example, we can write the intrinsic 𝐴-nucleon
Hamiltonian, this time including both the 𝑁𝑁 and 3𝑁 forces [15, Ch. 10]

�̂� = (1 − 1
𝐴
)
𝐴∑
𝑖=1

ℎ̂𝑖 +
1
𝐴

𝐴∑
𝑖<𝑗

ℎ̂𝑖𝑗 +
𝐴∑
𝑖<𝑗

�̂�𝑖𝑗 +
𝐴∑

𝑖<𝑗<𝑘
�̂�𝑖𝑗𝑘, (2.26)

where the nucleon 1B and 2B kinetic energy terms are

ℎ̂𝑖 = 𝑷 2
𝑖 ∕2𝑚, ℎ̂𝑖𝑗 = −𝑷𝑖 ⋅ 𝑷𝑗∕𝑚. (2.27)

Now we can normal order �̂� with respect to the a reference |Φ0⟩. We get

�̂� = 𝐸0 +
∑
𝑝𝑞
𝑓𝑝𝑞{�̂�†𝑞} +

1
4
∑
𝑝𝑞𝑟𝑠

Γ𝑝𝑞𝑟𝑠{�̂�†𝑞†�̂��̂�} +
1
36

∑
𝑖𝑗𝑘𝑙𝑚𝑛

𝑊𝑖𝑗𝑘𝑙𝑚𝑛{𝑖†𝑗†�̂�†�̂��̂�𝑙}, (2.28)

where 𝐸0 = ⟨Φ0|�̂�|Φ0⟩ is the reference state energy and 𝑓𝑝𝑞, Γ𝑝𝑞𝑟𝑠 and 𝑊𝑖𝑗𝑘𝑙𝑚𝑛 are anti-symmetrised matrix
elements which can be found using (2.12) & (2.24) and comparing (2.26) to (2.28). These expressions are in [15,
Ch. 10]. We have learned how to go from operators (acting in a particle’s Hilbert space) to second-quantised
operators (acting in a Fock space) to normal ordered second-quantised operators.

�̂� =
∑
𝑝𝑞
ℎ𝑝𝑞 �̂�

†𝑞 + 1
4

∑
𝑝𝑞𝑟𝑠

𝑉𝑝𝑞𝑟𝑠�̂�
†𝑞†�̂��̂� + ... = 𝐸0 +

∑
𝑝𝑞
𝑓𝑝𝑞{�̂�†𝑞} +

1
4
∑
𝑝𝑞𝑟𝑠

Γ𝑝𝑞𝑟𝑠{�̂�†𝑞†�̂��̂�} + ... (2.29)

3Somtimes denoted with colons ∶ ⋯ ∶
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2 Quantum Many-Body Theory

2.4 Wick’s theorem

See [15, Ch.10] for a full treatment of this subsection. The statement of Wick’s theorem is that, using (2.4) and
(2.24), one can recursively find

�̂�†1⋯ �̂�†𝑁𝑞𝑁 ⋯ 𝑞 = {�̂�†1⋯ �̂�†𝑁𝑞𝑁 ⋯ 𝑞1} (2.30)
+ �̂�†1𝑞1{�̂�

†
2⋯ �̂�†𝑁𝑞𝑁 ⋯ 𝑞2} − �̂�

†
1𝑞2{�̂�

†
2⋯ �̂�†𝑁𝑞𝑁 ⋯ 𝑞1} + singles

+
(
�̂�†1𝑞1�̂�

†
2𝑞2 − �̂�

†
1𝑞2�̂�

†
2𝑞1

)
{�̂�†3⋯ �̂�†𝑁𝑞𝑁 ⋯ 𝑞3} + doubles

+…+ full contractions,

where singles and doubles refer to the number of contractions in a term. Two important consquences follow by
inductive reasoning, starting from (2.24)

{⋯ �̂�†𝑞⋯} = −{⋯ 𝑞�̂�†⋯}, (2.31)
⟨Φ0|{�̂�†𝑞†⋯ �̂��̂�}|Φ0⟩ = 0. (2.32)

A less immediate consequence is related to the commutator of normal ordered operators. Take �̂� with particle rank
𝑀 and �̂� with particle rank 𝑁 , then

[
�̂�[𝑀], �̂�[𝑁]] =

𝑀+𝑁−1∑
𝑘=|𝑀−𝑁|

�̂� [𝑘], (2.33)

which gives a sum of different 𝑘B operators �̂� [𝑘].

2.5 Hartree-Fock equation

While deriving the shell model in 1.3, we employed the idea of a mean field experienced by each nucleon. This
concept stems from Hartree-Fock theory, where we rearrange the Hamiltonian as follows [5, 12]. We can write

�̂� =
∑
𝑝𝑞
ℎ𝑝𝑞 �̂�

†𝑞 + 1
4
∑
𝑝𝑞𝑟𝑠

⟨𝑝𝑞|�̂�|𝑟𝑠⟩A�̂�†𝑞†�̂��̂� = 𝐹 + 𝑉 . (2.34)

We define the Fock operator 𝐹 in terms of an auxiliary 1B operator �̂� .

𝐹 =
∑
𝑝𝑞
𝑓𝑝𝑞 �̂�

†𝑞 ≡
∑
𝑝𝑞
ℎ𝑝𝑞 �̂�

†𝑞 + �̂� . (2.35)

The residual interaction must then be

𝑉 ≡ 1
4
∑
𝑝𝑞𝑟𝑠

⟨𝑝𝑞|�̂�|𝑟𝑠⟩A�̂�†𝑞†�̂��̂� − �̂� . (2.36)
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2.5 Hartree-Fock equation

In essence, 𝐹 is the sum of the 1B Hamiltonians each with a mean field to be expressed by �̂� .

�̂� =
∑
𝑝𝑞
𝑢𝑝𝑞 �̂�

†𝑞, 𝑢𝑝𝑞 ≡
∑
𝑖
⟨𝑝𝑖|�̂�|𝑞𝑖⟩A. (2.37)

You can see that the matrix element 𝑢𝑝𝑞 is a sum over all hole states, giving us an average of the fields exerted by
all other nucleons present. (Since |𝑞𝑖⟩ = 0 whenever 𝑞 = 𝑖.) This is exactly what we had in (1.9)& (1.10). We can
diagonalise 𝐹 and find the Hartree-Fock eigenbasis {𝛼} such that we get the Hartree-Fock equation

𝜀𝛼𝛿𝛼𝛽 = ℎ𝛼𝛽 +
∑
𝑖
⟨𝛼𝑖|�̂�|𝛽𝑖⟩A, (2.38)

and 𝜀𝛼 is the Hartree-Fock single-particle energy of the spinorbital 𝜙𝛼. Note that the Hartree-Fock ground state
energy is then the sum of all hole state energies. The HF eigenfunctions 𝜙𝛼(𝒙) = ⟨𝒙|𝛼⟩ are expanded in terms of
some basis, for example the harmonic oscillator. We are seeking solutions to (2.38) of the form

|𝛼⟩ = ∑
𝑗
𝐶𝛼𝑗 |𝑗⟩, 𝐹 |𝛼⟩ = 𝜀𝛼|𝛼⟩. (2.39)

This eventually yields the iterative self-consistency solution

𝑓𝑗𝑗′ = ℎ𝑗𝑗′ +
holes∑
𝛽

∑
𝑗1𝑗2

(
𝐶𝛽𝑗1

)∗⟨𝑗𝑗1|�̂�|𝑗′𝑗2⟩A𝐶
𝛽
𝑗2
. (2.40)

The 1B part of the original Hamiltonian ℎ̂ is just the kinetic energy of a single nucleon. The 2B part �̂� contains the
𝑁𝑁 interaction and the exchange force. We can express (2.38) in position space as

− ℏ
2

2𝑚
∇2𝜙𝛼(𝒙) + �̂�𝜙𝛼(𝒙) = 𝜀𝛼𝜙𝛼(𝒙). (2.41)

The mean field potential �̂� is defined by its action on spinorbitals 𝜙𝛼

�̂�𝜙𝛼(𝒙) = �̂�H𝜙𝛼(𝒙) − ∫ 𝑑3𝑟′�̂�F(𝒙′,𝒙)𝜙𝛼(𝒙). (2.42)

We have introduced the Hartree and Fock potentials �̂�H and �̂�F

�̂�H =
holes∑
𝛽

∫ 𝑑3𝑟′𝜙∗
𝛽(𝒙

′)�̂�(𝒙′,𝒙)𝜙𝛽(𝒙), (2.43)

�̂�F =
holes∑
𝛽
𝜙∗
𝛽(𝒙

′)�̂�(𝒙′,𝒙)𝜙𝛽(𝒙), (2.44)

corresponding to the internucleon interaction and exchange force respectively.
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2 Quantum Many-Body Theory

2.6 Hamiltonian partitioning

In perturbation theory, we consider the Hamiltonian to be split up into the unperturbed or zero-order Hamiltonian
�̂�0 and a perturbation 𝜆𝑉 where 𝜆 ≪ 1. This is what is meant by partitioning the Hamiltonian;

�̂� ≡ �̂�0 + 𝜆𝑉 . (2.45)

We usually know the spectrum of �̂�0

�̂�0|𝑛(0)⟩ = 𝐸(0)
𝑛 |𝑛(0)⟩. (2.46)

We want to solve �̂�|𝑛⟩ = 𝐸𝑛|𝑛⟩. By expanding 𝐸𝑛 and |𝑛⟩ in orders of 𝜆

𝐸𝑛 = 𝐸(0)
𝑛 + 𝜆𝐸(1)

𝑛 + 𝜆2𝐸(2)
𝑛 +… , (2.47)

|𝑛⟩ = |𝑛(0)⟩ + 𝜆|𝑛(1)⟩ + 𝜆2|𝑛(2)⟩ +… . (2.48)

By comparing terms with the same degree in 𝜆, we find

𝐸(2)
𝑛 =

∑
𝑚≠𝑛

|𝑉𝑛𝑚|2
𝐸(0)
𝑛 − 𝐸(0)

𝑚

. (2.49)

This kind of energy denominator Δ ∼ 𝐸(0)
𝑛 −𝐸(0)

𝑚 shows up in perturbation theory. As we can see the definition of
Δ relies on the spectrum of �̂�0, and so depends on how we partition the Hamiltonian.

Møller-Plesset partitioning

We can impose �̂�0 =
∑
𝑝 𝜀𝑝�̂�

†�̂� in some single-particle basis {𝜙𝑖}. Using (2.4) we get

�̂�0|𝑟𝑠𝑡…⟩ = (𝜀𝑟 + 𝜀𝑠 + 𝜀𝑡 +…)|𝑟𝑠𝑡…⟩, (2.50)

which tells us that the spectrum of �̂�0 is any SD |𝑟𝑠𝑡…⟩ made up of spinorbitals {𝜙𝑖}. If the reference is |Φ0⟩ =
|𝑗𝑘… 𝑛⟩, then

�̂�0|Φ0⟩ = 𝐸(0)
0 |Φ0⟩, 𝐸(0)

0 = 𝜀𝑗 + 𝜀𝑘 +…+ 𝜀𝑛 =
∑
𝑖
𝜀𝑖. (2.51)

Note 𝐸0 ≠ 𝐸(0)
0 . In fact, 𝐸0 = (𝐸(0)

0 +
∑
𝑖 ℎ𝑖𝑖)∕2 using (2.23). For any other SD |Φ𝑎𝑏…

𝑖𝑗… ⟩, we then have

�̂�0|Φ𝑎𝑏…
𝑖𝑗… ⟩ = (𝐸(0)

0 + 𝜀𝑎 + 𝜀𝑏 +…− 𝜀𝑖 − 𝜀𝑗 −…)|Φ𝑎𝑏…
𝑖𝑗… ⟩. (2.52)

In canonical Hartree-Fock theory, the 1B part of the normal ordered Hamiltonian (2.28) satisfies 𝑓𝑝𝑞 = 𝜀𝑝𝛿𝑝𝑞. This
yields

�̂�0|Φ𝑎𝑏…
𝑖𝑗… ⟩ = (𝐸(0)

0 + 𝑓𝑎𝑎 + 𝑓𝑏𝑏 +…− 𝑓𝑖𝑖 − 𝑓𝑗𝑗 −…)|Φ𝑎𝑏…
𝑖𝑗… ⟩, (2.53)

which is often referred to as Møller-Plesset (MP) partitioning where �̂�0 is the diagonal part of 𝐹 in (2.35).
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2.7 Diagrammatic notation

Epstein-Nesbet partitioning

Other partitionings of the Hamiltonian can also be used. In particular, the diagonal part of the Hamiltonian in any
convenient Hilber-space representation can be used as the zero-order Hamiltonian. For a generic basis {Φ𝑖},

�̂�0 =
∑
𝑖
|Φ𝑖⟩⟨Φ𝑖|�̂�|Φ𝑖⟩⟨Φ𝑖| =

∑
𝑖
𝐻𝑖𝑖|Φ𝑖⟩⟨Φ𝑖|. (2.54)

In this way, any state is an eigenstate of �̂�0 with eigenvalue its energy. This is known as Epstein-Nesbet (EN)
partitioning and leads to perturbation expansions in which the Δ denominators contain differences of diagonal
matrix elements of the full Hamiltonian, i.e. 𝐻𝑖𝑖−𝐻00. Unlike MP partitioning which deals with traces of matrices
over hole states, the EN partitioning is not invariant under unitary transformation among particle and hole states.

2.7 Diagrammatic notation

To help generate and manipulate second-quantised expressions, in particular normal ordered ones, we will introduce
diagrammatic notation. This section will only cover rules of interpretation for one-particle operators as found in
[12, Ch. 4]. In quantum mechanics, there is a ‘time sequence’ to the application of operators (right-to-left). In
diagrams this sequence is down-to-up

t

Slater determinants

As previously mentioned, the reference state |Φ0⟩ is the Fermi vacuum. It is represented by nothing:

Φ0 = (2.55)

All other Slater determinants are represented by directed vertical or diagonal lines. particles point upwards and
holes point downards. For example

Φ𝑎
𝑖 = i a Φ𝑎𝑏

𝑖𝑗 = i ja b (2.56)

where bras and kets are specified by double lines above or below the diagram respectively. This is muted when
taking the reference expectation value.

|Φ𝑎
𝑖 ⟩ = {�̂�†𝑖}|Φ0⟩ = i a (2.57)
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2 Quantum Many-Body Theory

One-body operators

Take for example ⟨𝑏|�̂�|𝑎⟩{�̂�†�̂�}, we indicate with a marker (here a cross with dashes) the multiplicative factor
⟨𝑏|�̂�|𝑎⟩. The original ket |Φ𝑎

𝑖 ⟩ becomes |Φ𝑏
𝑖 ⟩ following the action of a normal ordered 1B operator �̂�N at the vertex.

The mnemonics OCB and IAK detail how to label the matrix elements with respect to hole/particle arrows.

i
a

b

vertex

⟨𝑏|�̂�|𝑎⟩|Φ𝑏
𝑖 ⟩

|Φ𝑎
𝑖 ⟩ a

b

in-annihilation-ket

out-creation-bra(OCB)

(IAK)
(2.58)

In general we can represent normal ordered one-body operators as

�̂�N =
∑
𝑝𝑞

⟨𝑝|�̂�|𝑞⟩{�̂�†𝑞}

=
∑
𝑎𝑏

a

b

+
∑
𝑖𝑗

i

j

+
∑
𝑖𝑎 a

i
+
∑
𝑖𝑎

ai
, (2.59)

whereas the full operator must also include the ‘bubble’

�̂� = �̂�N + ⟨Φ0|�̂� |Φ0⟩ = �̂�N +
∑
𝑖

i . (2.60)

A diagram in (2.59) is to be contracted in all valid ways in which states above and below interact. The only non-zero
contractions 𝑖†𝑗 = 𝛿𝑖𝑗 and �̂��̂�† = 𝛿𝑎𝑏 are represented as

i

j

= 𝛿𝑖𝑗 ,

a

b

= 𝛿𝑎𝑏. (2.61)

To learn more about Hugenholtz diagrams and anti-symmetrised Goldstone diagrams see the rest of [12, Ch. 4].
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3 IMSRG Formalism

To simplify ab initio many-body calculations, we want to decouple physics at different scales of energy by block-
diagonalising the Hamiltonian with respect to a reference. The IMSRG formalism provides a way to systematically
improve such techniques. This section is primarily taken from [16] and [15, Ch. 10].

3.1 Flow equation

Suppose we have a many-body system in some state |𝜓⟩, then the eigenvalue problem to find that system’s spectrum
is posed by the time-independent Schrödinger equation, omitting hats on operators

𝐻|𝜓⟩ = 𝐸|𝜓⟩. (3.1)

We want to use a unitary similarity transformation (hence the name similarity renormalisation group) so that

𝐻(𝑠) ≡ 𝑈 (𝑠)𝐻(0)𝑈 †(𝑠), (3.2)

which is parametrised by the flow parameter 𝑠. We choose a reference |Φ0⟩ (see 2.2) which is our initial guess of
the exact ground state energy eigenket. Alternatively, we could think of the exact states transforming as

|𝜓⟩ ≡ lim
𝑠→∞

𝑈 †(𝑠)|Φ0⟩, (3.3)

analogously to the Schroödinger/Heisenberg pictures for time evolution of a quantum-mechanical system. We are
transforming a non-vacuum, so a medium reference state (hence the name in-medium as opposed to in-vacuo).
Consistency requires

𝑈 (0) = 𝑈 †(0) = 𝐼, ⟨Φ0|𝐻(0)|Φ0⟩ = 𝐸0, (3.4)
lim
𝑠→∞

⟨Φ0|𝐻(𝑠)|Φ0⟩ = lim
𝑠→∞

⟨Φ0|𝑈 (𝑠)𝐻(0)𝑈 †(𝑠)|Φ0⟩ = ⟨𝜓|𝐻(0)|𝜓⟩ = 𝐸. (3.5)

We can freely impose the following condition on the unitary operator 𝑈 (𝑠)

𝑑
𝑑𝑠
𝑈 (𝑠) ≡ 𝜂(𝑠)𝑈 (𝑠)

unitarity
⟹

𝑑
𝑑𝑠
𝑈 †(𝑠) = −𝑈 †(𝑠)𝜂(𝑠), (3.6)

such that we obtain the SRG flow equation for the transformed Hamiltonian by the product rule
𝑑
𝑑𝑠
𝐻(𝑠) = [𝜂(𝑠),𝐻(𝑠)]. (3.7)
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3 IMSRG Formalism

We call 𝜂(𝑠) the generator of the flow since it determines the behaviour of 𝑈 (𝑠) and thus of the transformation
itself. We choose 𝜂(𝑠) so that

𝐻(𝑠) ≡ 𝐻d(𝑠) +𝐻od(𝑠)
𝑠→∞
→ 𝐻d(𝑠), (3.8)

where 𝐻d(𝑠) is ‘diagonal’ in the core. Usually the core is the collection of states occupied in the reference but not
always. We will call excluded the states which are excitations from the core. This is convenient, because it becomes
easy to read off 𝐸 via

lim
𝑠→∞

⟨Φ0|𝐻(𝑠)|Φ0⟩ = lim
𝑠→∞

⟨Φ0|𝐻d(𝑠)|Φ0⟩ = 𝐸. (3.9)
When we say the Hamiltonian becomes diagonal in the state |Φ0⟩, we mean for all non-trivial particle-hole pairs

lim
𝑠→∞

⟨Φ0|𝐻(𝑠)|Φ𝑎𝑏...
𝑖𝑗... ⟩ ≡ 0. (3.10)

If we think of a schematic, finite matrix representation of the Hamiltonians, this decoupling becomes clearer.

|Φ0⟩ |Φa
i ⟩ |Φab

ij ⟩ |Φabc
ijk⟩...

|Φ
0
⟩

|Φ
a i
⟩

|Φ
a
b

ij
⟩

..
.|Φ

a
b
c

ij
k
⟩

⟨i|H(0)|j⟩

s→∞−→

|Φ0⟩ |Φa
i ⟩ |Φab

ij ⟩ |Φabc
ijk⟩...

|Φ
0
⟩

|Φ
a i
⟩

|Φ
a
b

ij
⟩

..
.|Φ

a
b
c

ij
k
⟩

⟨i|H(∞)|j⟩

Fig. 6 As 𝑠→ ∞, the Hamiltonian becomes block-diagonal, i.e. the reference state
decouples from any particle-hole excitation. There are no restrictions on the block
connecting excitations.

If no reference state is given, convention tells us to use the true vacuum as the free-space reference state. The
number after ‘IMSRG’ indicates the particle rank after which we truncate the induced normal ordered operators at
each calculation. For example, when evaluating an operator commutator [�̂�, �̂�] = �̂� or product �̂��̂� = �̂�;

�̂� =

IMSRG (2)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

⟨Φ0|�̂�|Φ0⟩ +
∑
𝑝𝑞
𝑋𝑝𝑞{�̂�†𝑞} +

1
4
∑
𝑝𝑞𝑟𝑠

𝑌𝑝𝑞𝑟𝑠{�̂�†𝑞†�̂��̂�}+
1
36

∑
𝑚𝑛𝑝𝑞𝑟𝑠

𝑍𝑚𝑛𝑝𝑞𝑟𝑠{�̂�†�̂�†�̂�†�̂��̂�𝑞}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
IMSRG (3)

+ ... (3.11)
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3.2 Magnus formulation

As seen in (2.33), a 𝐾B and 𝐿B operator commute to give a sum of 𝑀B operators

[𝐾,𝐿] →𝑀, (3.12)

for |𝐾 − 𝐿| ≤ 𝑀 ≤ 𝐾 + 𝐿 − 1. For a simple product of operators that range is |𝐾 − 𝐿| ≤ 𝑀 ≤ 𝐾 + 𝐿. If we
sum over 𝑁 states during the matrix multiplication, the product’s spatial complexity would scale as 𝑁𝐾+𝐿+𝑀 . For
IMSRG (3) we have 𝑀 ≤ 3 so that [2, 2] → 3, [2, 3] → 3 and [3, 3] → 3 are all possible commutator scenarios.
We usually use shell model spinorbitals with 𝑁 ≥ 20 so the scalings 𝑁7, 𝑁8 and 𝑁9 differ significantly [17].
To limit computational cost while maintaining the increased accuracy, we will also use IMSRG (3n7) which limits
the surviving 3B operators of IMSRG (3) to commutator and product diagram topologies corresponding to (𝑁7).

3.2 Magnus formulation

One choice of unitary transformation is defined by the Magnus formulation [18],

𝑈 (𝑠) ≡ 𝑒Ω(𝑠). (3.13)

Unitarity of 𝑈 (𝑠) implies that the Magnus operator satisfies Ω†(𝑠) = −Ω(𝑠). From (3.6), we get the ‘flow equation’
for Ω(𝑠) [18]

𝑑
𝑑𝑠

Ω(𝑠) =
∞∑
𝑛=0

𝐵𝑛
𝑛!
𝑐𝑛Ω(𝜂), (3.14)

where 𝐵𝑛 are the Bernoulli numbers and 𝑐𝑛Ω are nested commutators

𝑐0Ω(𝜂) ≡ 𝜂, 𝑐𝑛Ω(𝜂) ≡
[
Ω, 𝑐𝑛−1Ω (𝜂)

]
. (3.15)

Operators evolve as ̂(𝑠) = 𝑒Ω(𝑠)̂(0)𝑒Ω(𝑠) where

̂(𝑠) = ̂(0) + 1
1!
[
Ω(𝑠), ̂(0)

]
+ 1

2!
[
Ω(𝑠),

[
Ω(𝑠), ̂(0)

]]
+ ... (3.16)

We can numerically evolve Ω(𝑠) using (3.14)and subsequently apply (3.16) to transform any operator along the
IMSRG flow.

3.3 Choice of generator 𝜂(𝑠)

Following [16], we saw in 3.1 that we want to decouple the reference by suppressing the offdiagonal part of the
Hamiltonian, 𝐻od. But we still have the freedom to chose 𝜂(𝑠) as long as it drives 𝐻od(𝑠) → 0 along the flow. Two
appropriate generators for the single reference case are the White generator and the imaginary time generator.
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3 IMSRG Formalism

White generator

We start by reminding ourselves of the definition of 𝐻od. It connects the references to excitations and so has the
form

𝐻od =
∑
𝑎𝑖
𝑓𝑎𝑖{�̂�†𝑖} +

1
4
∑
𝑎𝑏𝑖𝑗

Γ𝑎𝑏𝑖𝑗{�̂�†�̂�†𝑗𝑖} +
1
36

∑
𝑎𝑏𝑐𝑖𝑗𝑘

𝑊𝑎𝑏𝑐𝑖𝑗𝑘{�̂�†�̂�†𝑐†�̂�𝑗𝑖}. (3.17)

The White generator is defined as

𝜂(𝑠) ≡ 𝐻od(𝑠)
Δ

(3.18)

=
∑
𝑎𝑖

𝑓𝑎𝑖
Δ𝑎𝑖

{�̂�†𝑖} + 1
4
∑
𝑎𝑏𝑖𝑗

Γ𝑎𝑏𝑖𝑗
Δ𝑎𝑏𝑖𝑗

{�̂�†�̂�†𝑗𝑖} + 1
36

∑
𝑎𝑏𝑐𝑖𝑗𝑘

𝑊𝑎𝑏𝑐𝑖𝑗𝑘

Δ𝑎𝑏𝑐𝑖𝑗𝑘
{�̂�†�̂�†𝑐†�̂�𝑗𝑖},

where we meet our old friend the energy denominator Δ (2.6). The operators 𝑓, Γ and 𝑊 all flow with 𝑠 and so
does Δ. Up to particle rank of 2, with MP partitioning Δ𝑎𝑏...𝑖𝑗... is defined as

Δ𝑎𝑖 = 𝑓𝑎𝑎 − 𝑓𝑖𝑖 + Γ𝑎𝑖𝑎𝑖, (3.19)
Δ𝑎𝑏𝑖𝑗 = 𝑓𝑎𝑎 + 𝑓𝑏𝑏 + Γ𝑎𝑏𝑎𝑏 − 𝑓𝑖𝑖 − 𝑓𝑗𝑗 − Γ𝑖𝑗𝑖𝑗 (3.20)

− Γ𝑎𝑖𝑎𝑖 − Γ𝑏𝑗𝑏𝑗 − Γ𝑎𝑗𝑎𝑗 − Γ𝑏𝑖𝑏𝑖,

Using EN partitioning the denominator matrix elements are

Δ𝑎𝑖 = ⟨Φ𝑎
𝑖 |𝐻|Φ𝑎

𝑖 ⟩ − 𝐸0 = ⟨Φ0|{𝑖†�̂�}𝐻{�̂�†𝑖}|Φ0⟩ − 𝐸0, (3.21)
Δ𝑎𝑏𝑖𝑗 = ⟨Φ𝑎𝑏

𝑖𝑗 |𝐻|Φ𝑎𝑏
𝑖𝑗 ⟩ − 𝐸0 = ⟨Φ0|{𝑖†𝑗†�̂��̂�}𝐻{�̂�†�̂�†𝑖𝑗}|Φ0⟩ − 𝐸0. (3.22)

Imaginary time generator

The imaginary time (IT) generator is instead defined as

𝜂(𝑠) ≡ 𝐻od(𝑠)
sgn(Δ) (3.23)

=
∑
𝑎𝑖

sgn(Δ𝑎𝑖
)
𝑓𝑎𝑖{�̂�†𝑖} +

1
4
∑
𝑎𝑏𝑖𝑗

sgn(Δ𝑎𝑏𝑖𝑗
)
Γ𝑎𝑏𝑖𝑗{�̂�†�̂�†𝑗𝑖} +… . (3.24)

in terms of the sign of Δ;
sgn(Δ) =

{
+1 Δ > 0,
−1 Δ < 0.

(3.25)

Here we note the sensitivity of the flow on energy level separation for both the White and IT generators. If the
orbital energy spacings are not far enough, 𝜂(𝑠) ∼ 𝐻𝑜𝑑 will not be suppressed due to a small energy denominator
Δ and the flow will diverge away from the targeted decoupling.
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4 Spurious Isospin Symmetry Breaking

Since ⟨𝑇 2⟩ is misbehaved, by looking at Fig. 7, and 𝑇 2 ∼ (𝑇 +𝑇 − + 𝑇 −𝑇 +) it was evident that the code at the start
of the project could not accurately handle calculations regarding ⟨𝑇 ±⟩ and thus 𝛿C. Since 𝛿C is of the order 1%[1],
we should try to have a firm understanding of all sources of isospin symmetry breaking in the IMSRG++[19], and
try to control them. Throughout this section, we will seek to specifically understand sources of spurious ISB, which
is just ISB arising even though it is not predicted (due to approximations in the Hamiltonian, for example).

4.1 Evidence for spurious ISB

As mentioned in section 0, we seek a framework with which to compute 𝛿C. In particular, it should reliably handle
calculations involving ⟨𝑇 2⟩ and thus ⟨𝑇 ±⟩. This means that if there were no a priori sources of ISB, i.e. we introduce
a nuclear potential faithful to the description of the shell model while including no Coulombic interaction and no
pion-exchange mass or abundance difference, isospin symmetry should be observed.
A candidate for such a non-Coulombic attractive potential is the Minnesota potential, which is the sum of two
inverted Gaussians. Looking at Fig. 7, S. Stroberg’s IMSRG++ code for a 14O post-Hartree-Fock Minnesota
reference state found that, as the flow parameter tends to infinity, the isospin does not converge as expected. There
are 8 protons and 6 neutrons in 14O. The net isospin of the nucleus is 𝑡 = 1 as seen in section 1.6. But the expectation
value of 𝑇 2 did not converge to a perfect ⟨𝑇 2⟩ = 𝑡(𝑡 + 1) = 2 with the IMSRG flow. After extending the IMSRG
truncation to IMSRG(3), the error (lim𝑠→∞⟨𝑇 2(𝑠)⟩ − 2) actually grew instead of being reduced (see Fig. 8).
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Fig. 7 Isospin symmetry is broken under S. Stroberg’s IMSRG flow of 14O HF Minnesota
potential reference state. (Left) The isospin ⟨𝑇 2(𝑠)⟩ should trend to 2 as 𝑠→ ∞ and
(Right) the two-body part of the commutator [𝐻(𝑠), 𝑇 2(𝑠)

] should be identically 0
if 𝑇 2 is conserved. Presented at [20], reproduced here.
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4 Spurious Isospin Symmetry Breaking

4.2 Sources of spurious ISB

Fig. 7 had numerical parameters hw=16 (MeV) and cLS=-5.00. From now on we will set hw=25, cLS=-10.00 to
prevent the inversion of energy levels in our toy model. Going back to 1.3, we can express the reference as a linear
combination of harmonic oscillator eigenstates with quantum number𝑁 . Because it’s impossible to store infinitely
many states on a computer, we truncate the basis at 𝑁 = 2𝑛 + 𝓁 ≤ 𝑒max. In parallel to my work, Jonathan Riess
investigated the 𝑒max truncation’s contribution to the ISB. He found that it did not account for most of the error.
(This truncation was not expected to break isospin since it does not discriminate between p+ and n0 energy levels.)
Continuing with the same 14O reference, after finding that the error did not significantly depend on the energy level
spacing ℏ𝜔 either, the importance of orbital population was investigated. It was found that for certain orbital spaces,
i.e. depending on which shells are included in the model space of the nucleus, there was a much greater lack of
convergence to 2 (Fig. 8). At the IMSRG(2) approximation, when the model space was reduced to the 0p3∕2, 0p1∕2
and 0d5∕2 energy shells, the error was acute relative to the full 𝑒max = 3 model space for 14O.
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2.000
2.001
2.002
2.003
2.004
2.005
2.006
2.007
2.008

T2 (s
)

ISB with 14O HF Minnesota reference, emax = 3
IMSRG (2)
IMSRG (3n7)
IMSRG (3)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
SRG flow parameter s aa

Reduced orbital space (0s 0p 1p), IMSRG(2)

emax = 3
reduced+0d
reduced+0d+1s
reduced+0d+1s+0f
reduced-1p
reduced-1p+0d

Fig. 8 (Left) IMSRG truncation is relaxed yet the error in ⟨𝑇 2(∞)⟩ does not decrease.
(Right) Different orbital spaces display different convergence behaviours.

The Hartree Fock diagonalisation step (2.40) is responsible for the ISB at 𝑠 = 0. This is because we express 𝑇 2

as normal ordered with respect to a HF eigenstate, for which protons and neutrons see a different mean field since
there are more protons than neutrons in the reference. Because of the overlap integrals in (2.42), this immediate
ISB only occurs when 𝑁 ≠ 𝑍 and there are orbitals with same 𝓁 but different 𝑛 quantum numbers 4.
Hoping to track what caused the error in the unrestricted case, an investigation into the source of error in the 0p3∕2,
0p1∕2, 0d5∕2 model space was warranted. To pinpoint the source of error even further, the cumulative sum (3.16)
in the Magnus evolution of ⟨𝑇 2⟩ was evaluated term by term as in Fig. 9. It indicated that the source of isospin
symmetry breaking was the third term in (3.16); the nested commutator

⟨[Ω(𝑠), [Ω(𝑠), 𝑇 2(0)
]]⟩. (4.1)

4For 14O reduced orbitals in Fig. 8 there are several ‘echelons’ of HF mixing; none, including just 1s or 1p and including both 1s and
1p. ISB in configurations with initial HF mixing may be fixed by adding correlations with IMSRG flow as with the 0d and 0d+1s cases.
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Fig. 9 (Left) Cumulative sum shows that the third term in (3.16) is problematic for an
asymmetric 14O reference and offdiagonal to be decoupled using the White
generator with Epstein-Nesbet partitioning.
(Right) When Ω(𝑠) ≈ 𝜂(𝑠) is evolved as 𝑠 → ∞, the third term persists.

But we were using the White generator (see 3.3),

𝜂(𝑠) ≡ 𝐻od
Δ

⟹ lim
𝑠→∞

𝜂(𝑠) = 0. (4.2)

Looking at (3.14) with 𝜂 small, we make the approximation Ω ≈ 𝜂 and expand (4.1) explicitly

⟨[𝜂(𝑠), [𝜂(𝑠), 𝑇 2(0)
]]⟩ = ⟨Φ0|(𝜂2(𝑠)𝑇 2(0) − 2𝜂(𝑠)𝑇 2(0)𝜂(𝑠) + 𝑇 2(0)𝜂2(𝑠))|Φ0⟩, (4.3)

where |Φ0⟩ is the 14O HF Minnesota reference state. We will now evaluate this commutator analytically using
Hugenholtz and ASG diagrams [12] in order to further understand why this commutator did not vanish.

Recall the rules for commutators of normal ordered operators (2.33). Setting the 1B and 3B parts of Ω to zero
did not affect the code’s evaluation of (4.1), while erasing the 2B part eliminated it. This meant we should only
consider products in the commutator which yield a non-zero 0B and involve the 2B part of Ω, which we call Ω2B.
Since the outer commutator in (4.3) must be between 𝜂2B and the inner commutator, we need only consider the
parts of 𝑇 2 which give a non-zero [

𝜂2B, 𝑇 2]
2B since we are looking for an overall 0B term. This leaves only 𝑇 2

1B and
𝑇 2
2𝐵. Because𝐻od only connects the reference state with excited states, so does 𝜂2B. This means the only two-body

diagrams 𝜂2B can produce are

and .
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4 Spurious Isospin Symmetry Breaking

As a result, both the 𝜂2𝑇 2 and 𝑇 2𝜂2 terms from the commutator can’t be fully contracted down to a 0B term given
𝑇 2

1B or 𝑇 2
2B at either end of the diagram. Equation (4.1) reduces down to

⟨[Ω(𝑠), [Ω(𝑠), 𝑇 2(0)
]]⟩ = −2⟨Φ0|𝜂(𝑠)𝑇 2(0)𝜂(𝑠)|Φ0⟩

= −2⟨Φ0|𝜂2B(𝑠)𝑇 2
1B(0)𝜂2B(𝑠)|Φ0⟩ − 2⟨Φ0|𝜂2B(𝑠)𝑇 2

2B(0)𝜂2B(𝑠)|Φ0⟩. (4.4)

These terms correspond to the two Hugenholtz skeletons in Fig. 10, and can now be evaluated. To save space, we
will write the anti-symmetrised two-body (2B) matrix elements as

𝜂𝑝𝑞𝑟𝑠 = ⟨𝑝𝑞|𝜂|𝑟𝑠⟩ − ⟨𝑝𝑞|𝜂|𝑠𝑟⟩,

and similarly for 𝑇 2
𝑝𝑞𝑟𝑠. The matrix elements of the 1B and anti-symmetrised 2B parts of normal ordered 𝑇 2 are

found starting with (1.25), where 𝜇 is the orbital 𝜇 with 𝑡𝑧 flipped.

𝑇 2
𝑝𝑞 =

3
4
𝛿𝑝𝑞 +

∑
𝑘
𝑛𝑘𝑇

2
𝑝𝑘𝑞𝑘,

𝑇 2
𝑝𝑞𝑟𝑠 =

{
𝐶noflip(𝛿𝑝𝑟𝛿𝑞𝑠 − 𝛿𝑝𝑠𝛿𝑞𝑟) nucleon type is not changed,
𝐶flip(𝛿𝑝𝑟𝛿𝑞𝑠 − 𝛿𝑝𝑠𝛿𝑞𝑟) p+ goes to n0, vice versa.

𝐶noflip = 1∕2 and 𝐶flip = 1 as in (1.25) but we can keep them explicit to track the influence of each part of 𝑇 2
𝑝𝑞𝑟𝑠.

i
i
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i

i
i

i
i

�
��
�(i) (j)(a)
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(c) �(i)(a) (b)
(j)

(l)

i
i

“output” — 2023/9/6 — 11:22 — page — #1 i
i

i
i

i
i

(i) (j)

(c)(d)

(a)(b) (i)(j)
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(k)(l)

(i)

(j)

(c)

(a)

(b)

(k)

Fig. 10 Diagrammatic notation for the 𝑇 2
1B term (left) and 𝑇 2

2B term (right) in (4.4).
Hugenholtz skeletons are expanded into directed Hugenholtz diagrams each of
which are then expanded into anti-symmetrised Goldstone diagrams (ASG). These
can finally be interpreted according to rules laid out in [12].
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4.2 Sources of spurious ISB

Adding all 5 ASG diagrams yields (see appendix)

⟨[𝜂(𝑠), [𝜂(𝑠), 𝑇 2(0)
]]⟩ = −2

∑
𝑎𝑏𝑖𝑗

[
𝜂𝑖𝑗𝑎𝑏

(
𝑇 2

1B
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
1
2
𝜂𝑎𝑏𝑖𝑗(𝑛𝑗 − 𝑛𝑏)

𝑇 2
2B p ladder

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

+1
4
𝜂𝑎𝑏𝑖𝑗𝑛𝑎𝑛𝑏

𝑇 2
2B h ladder

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

+1
4
𝜂𝑎𝑏𝑖𝑗𝑛𝑖𝑛𝑗

𝑇 2
2B ring

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
−𝜂𝑎𝑏𝑖𝑗𝑛𝑏𝑛𝑗

)
+ 𝜂𝑖𝑗𝑎𝑗𝜂𝑎𝑏𝑖𝑏𝑛𝑗𝑛𝑏

]
.

(4.5)

The above expression only comes from the isospin-flipping matrix elements of 𝑇 2, since [𝜂(𝑠), 𝑇 𝑧(0)] = 0. The
absence of any 𝐶noflip factor in the final expression in the appendix agrees with this expectation. (4.5) was found to
agree with IMSRG++ for every attempted configuration of the model space.

Asymmetric |Φ⟩
In our notation, where 𝑎, 𝑏, 𝑐, ... refer to particle states and 𝑖, 𝑗, 𝑘, ... refer to hole states, the occupation numbers 𝑛𝑗
and 𝑛𝑏 are redundant, as these spinorbitals are necessarily filled and empty respectively. However, the occupation
number 𝑛𝑏 and hole number 𝑛𝑗 only necessarily vanish for a symmetric reference, for which 𝑗 and 𝑗 are both hole
states and 𝑏 and 𝑏 are both particle states (𝑁 = 𝑍). For the RHS of (4.5) to vanish, we should then have a symmetric
reference and 𝜂2B(𝑠) as we will see.

Asymmetric 𝜂(𝑠)

For a symmetric reference, if 𝜂𝑎𝑏𝑖𝑗 = 𝜂𝑎𝑏𝑖𝑗 = 𝜂𝑎𝑏𝑖𝑗 = 𝜂𝑎𝑏𝑖𝑖 = ..., then the sum trivially vanishes. Note we must have
an even number of overlined indices to respect charge conservation. Since 𝜂𝑎𝑏𝑖𝑗(𝑠) = 𝐻od

𝑎𝑏𝑖𝑗∕Δ𝑎𝑏𝑖𝑗 , there are two
contributors to the isospin asymmetry;

• 𝐻od
𝑎𝑏𝑖𝑗 =

1
4Γ𝑎𝑏𝑖𝑗{�̂�

†�̂�†𝑗𝑖} (3.17) spoils isospin symmetry for an asymmetric core and thus excitations,

• Δ𝑎𝑏𝑖𝑗
{Møller-Plesset (3.20)

Epstein-Nesbet (3.22)
matrix elements break symmetry for asymmetric reference.

If 𝜂2B is not isospin-symmetric, (4.5) does not necessarily vanish as desired. If on top of this the reference is also
asymmetric, this could add another source of ISB due to 𝑛𝑏 and 𝑛𝑗 .

Co
nfi

g. |Φ0⟩ S S S S A A A A
𝜂(𝑠) W W IT IT W W IT IT
𝐻od S A S A S A S A

Epst-Nesb 0.001868 0.098568 0.000000 76.906202 0.000379 0.000379 0.000000 0.000000Møll-Pless 0.000000 0.303273 0.000833 0.000833
HF Ep-Ne 0.00123 0.093808 0.000000 214.325843 0.000142 0.004746 0.318964 14.650016HF Mø-Pl 0.000000 0.212356 0.000271 0.006557

Table 1 ⟨[𝜂(𝑠), [𝜂(𝑠), 𝑇 2(0)
]]⟩ at IMSRG(2) 𝑠 = 0 for different configurations with the 14O

(or 16O) reduced orbital space 0p3∕2, 0p1∕2 and 0d5∕2 with and without the HF
diagonalisation step and 1p orbitals. See Fig. 11.
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4 Spurious Isospin Symmetry Breaking

We can compare these considerations to a numerical calculation of the second nested commutator. In Table 1, the
symmetric (S) reference option is 16O (𝑁 = 𝑍) while the asymmetric (A) one is good old 14O (see Fig. 11). The
White generator and imaginary time generators are abbreviated as W and IT respectively. A symmetric offdiagonal
𝐻od definition entails that we welcome the unoccupied neutron 0p1∕2 orbital as part of the core to be decoupled,
while the asymmetric definition excludes it. Møller-Plesset and Epstein-Nesbet partitionings of Δ for the White

p+ n0

0s1/2 0s1/2

0p3/2

0p1/2

0d5/2

core
excluded

p+ n0

0s1/2 0s1/2

0p3/2

0p1/2

0d5/2

core
excluded

A⋯A A⋯S

p+ n0

0s1/2 0s1/2

0p3/2

0p1/2

0d5/2

core
excluded

p+ n0

0s1/2 0s1/2

0p3/2

0p1/2

0d5/2

core
excluded

S⋯A S⋯S
Fig. 11 The different configurations of the reduced orbital space based on the isospin

symmetry of the reference and 𝐻od respectively. For example, A⋯S is a model
space with asymmmetric (A) reference but symmetric (S) offdiagonal definition.

generator 𝜂(𝑠) = 𝐻od∕Δ both lead to spurious ISB. However, for the MP case of SWS, the commutator vanished.
This is because neither the reference (and thus Δ) nor 𝐻od broke isospin symmetry.
When the imaginary generator was substituted, the error vanished for a symmetric reference and 𝐻od (and thus 𝜂).
This is because, as in the SWS MP case, the denominator did not asymmetrise 𝜂 despite 𝐻od being symmetric.
From Table 1, we see the IT generator does not discriminate between EN and MP partitioning. This is because
we construct the model space such that the energy levels are non-degenerate enough to allow lim𝑠→∞ 𝜂(𝑠) =
lim𝑠→∞𝐻od∕Δ = 0, which means Δ is sufficiently big to ensure there is no risk of different partitioning lead-
ing to different sgn(Δ).

Importantly, ⟨𝑇 2⟩ should exactly be equal to 2 for 14O or 0 for 16O since we have removed authentic sources of
ISB. Either way, the second nested commutator contributed more error than any other term, so should be eliminated.

The sum (4.5) was reindexed in terms of orbital quantum numbers and isospin-basis elements for a symmetric
reference, e.g. in terms of ⟨𝑇 = 1, 𝑇 𝑧 = 1|𝜂|𝑇 = 1, 𝑇 𝑧 = 1⟩,..., and was found to agree with the computed com-
mutator (see appendix). Looking at Table 1, the HF diagonalisation step seems to introduce spurious ISB before
IMSRG. After exploration, this ISB persists after IMSRG flow which should be investigated.
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4.3 Remedies for spurious ISB

4.3 Remedies for spurious ISB

Eliminating the problematic commutator (4.1) by switching to an isospin-symmetric energy denominator remedied
the spurious ISB caused by 𝜂(𝑠) for isospin-symmetric |Φ0⟩ and 𝐻od. This is shown in Fig. 12 and Fig. 13 below.
If the calculation demanded an asymmetric reference, then at some of the highlighted terms in (4.5) sum might

1 2 3 4 5 6 7 8 9
0.006

0.004

0.002

0.000

0.002

T2 (s
)

1 2 3 4 5 6 7 8 9

s = 0 s

Number of terms in sum for T 2(s) aaa

IMSRG (2)
IMSRG (3n7)
IMSRG (3)

14O no HF SITS (0p3/2 0p1/2 0d5/2)

Fig. 12 (Left) For a symmetric offdiagonal, the imaginary time generator as a whole is
isospin symmetric. So when we consider a symmetric reference, the sum (4.5)
vanishes. The rest of the nested commutators are muted by the factorial in the
denominator (see (3.16)).

1 2 3 4 5 6 7 8 9
0.006

0.004

0.002

0.000

0.002

T2 (s
)

1 2 3 4 5 6 7 8 9

s = 0 s

Number of terms in sum for T 2(s) aaa

IMSRG (2)
IMSRG (3n7)
IMSRG (3)

14O no HF SWS (MP) (0p3/2 0p1/2 0d5/2)

Fig. 13 (Left) MP partitioning of Δ paired with an isospin-symmetric 𝐻od render the
White generator 𝜂(𝑠) isospin-symmetric. As in Fig. 12, the sum vanishes for a
symmetric reference as a result.

not vanish. But those without 𝑛𝑏 or 𝑛𝑗 would cancel for a symmetric generator 𝜂(𝑠). This is apparent in Table 1
when going from AWS to AITS, whereby the generator becomes symmetric so that the term vanishes. In other
words, symmetrising the generator reduces the spurious ISB but in principle it cannot be completely eliminated for
an asymmetric reference IMSRG++ calculation.
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5 Conclusion

After reviewing the basics of nuclear structure, redefining the many-body problem with the particle-hole formula-
tion and introducing the IMSRG, we were able to identify three sources of spurious ISB in the IMSRG:

1. an asymmetric reference state |Φ0⟩,
as well as an asymmetric energy denominator SRG flow generator 𝜂(𝑠), e.g. the White or imaginary time generator,

2. via an asymmetric energy denominator Δ,
3. via an isospin-asymmetric definition of 𝐻od .

These sources were made manifest by analytically reducing the second nested commutator in the Magnus cumula-
tive sum for 𝑇 2(𝑠) by employing diagrammatic notation and looking at particle and hole states.
We found that to remedy the spurious ISB caused by 𝜂(𝑠) in this commutator (which would greatly reduce the over-
all ISB), one would need to symmetrise Δ (by using the imaginary-time generator or employing MP partitioning
for the White generator) and have a symmetric reference and offdiagonal definition.

This work lays a path forward for assessing spurious isospin symmetry breaking in 0+ → 0+ superallowed beta
decays when 𝑁 ≈ 𝑍. For such systems the spurious ISB caused by IMSRG++ can be greatly reduced by using a
symmetric generator, which allows for more accurate calculations involving isospin. As we saw in the introduction,
this is a step toward a reliable framework for calculating 𝛿C.
When diagonalising to the Hartree-Fock basis, the problematic commutator displayed curious behaviour as the
IMSRG flowed, which needs to be better understood since realistic calculations usually involve a HF basis. The
benefit of using a symmetric generator such as the imaginary-time generator should be investigated, in particular
for neutrinoless double-beta decay where 𝑁 and 𝑍 differ greatly [21].
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Appendix
𝑇 2

1B diagrams

+ = 1
2
∑
𝑎𝑏𝑐𝑖𝑗

𝜂𝑖𝑗𝑎𝑏𝑇
2
𝑏𝑐𝜂𝑎𝑐𝑖𝑗 −

1
2
∑
𝑎𝑏𝑖𝑗𝑙

𝜂𝑖𝑗𝑎𝑏𝑇
2
𝑙𝑗𝜂𝑎𝑏𝑖𝑙

= 1
2
∑
𝑎𝑏𝑐𝑖𝑗

𝜂𝑖𝑗𝑎𝑏(
3
4
𝛿𝑏𝑐 +

∑
𝑘
𝑇 2
𝑏𝑘𝑐𝑘)𝜂𝑎𝑐𝑖𝑗 −

1
2
∑
𝑎𝑏𝑖𝑗𝑙

𝜂𝑖𝑗𝑎𝑏(
3
4
𝛿𝑙𝑗 +

∑
𝑘
𝑇 2
𝑙𝑘𝑗𝑘)𝜂𝑎𝑏𝑖𝑙

= 3
8
∑
𝑎𝑏𝑖𝑗

𝜂𝑖𝑗𝑎𝑏(𝜂𝑎𝑏𝑖𝑗 − 𝜂𝑎𝑏𝑖𝑗) +
1
2

∑
𝑎𝑏𝑐𝑖𝑗𝑘

𝜂𝑖𝑗𝑎𝑏𝑇
2
𝑏𝑘𝑐𝑘𝜂𝑎𝑐𝑖𝑗 −

1
2

∑
𝑎𝑏𝑖𝑗𝑘𝑙

𝜂𝑖𝑗𝑎𝑏𝑇
2
𝑙𝑘𝑗𝑘𝜂𝑎𝑏𝑖𝑙

= 1
2

∑
𝑎𝑏𝑐𝑖𝑗𝑘

𝜂𝑖𝑗𝑎𝑏𝜂𝑎𝑐𝑖𝑗

{
+𝐶noflip(𝛿𝑏𝑐𝛿𝑘𝑘 − 𝛿𝑏𝑘𝛿𝑘𝑐)
+𝐶flip(𝛿𝑏𝑐𝛿𝑘𝑘 − 𝛿𝑏𝑘𝛿𝑘𝑐)

− 1
2

∑
𝑎𝑏𝑖𝑗𝑘𝑙

𝜂𝑖𝑗𝑎𝑏𝜂𝑎𝑏𝑖𝑙

{
+𝐶noflip(𝛿𝑙𝑗𝛿𝑘𝑘 − 𝛿𝑙𝑘𝛿𝑘𝑗)
+𝐶flip(𝛿𝑙𝑗𝛿𝑘𝑘 − 𝛿𝑙𝑘𝛿𝑘𝑗)

†
= 1

2
∑
𝑎𝑏𝑐𝑖𝑗𝑘

𝜂𝑖𝑗𝑎𝑏𝜂𝑎𝑐𝑖𝑗

{
+𝐶noflip𝛿𝑏𝑐𝛿𝑘𝑘
−𝐶flip𝑛𝑏𝛿𝑏𝑘𝛿𝑘𝑐

− 1
2

∑
𝑎𝑏𝑖𝑗𝑘𝑙

𝜂𝑖𝑗𝑎𝑏𝜂𝑎𝑏𝑖𝑙

{
+𝐶noflip𝛿𝑙𝑗𝛿𝑘𝑘 − 𝐶noflip𝛿𝑙𝑘𝛿𝑘𝑗
−𝐶flip𝑛𝑗𝛿𝑙𝑘𝛿𝑘𝑗

= 1
2
∑
𝑎𝑏𝑐𝑖𝑗

𝜂𝑖𝑗𝑎𝑏𝜂𝑎𝑐𝑖𝑗
(
𝐶noflip𝛿𝑏𝑐

∑
𝑘
𝛿𝑘𝑘 − 𝐶flip𝑛𝑏

∑
𝑘
𝛿𝑏𝑘𝛿𝑘𝑐

)

− 1
2
∑
𝑎𝑏𝑖𝑗𝑙

𝜂𝑖𝑗𝑎𝑏𝜂𝑎𝑏𝑖𝑙
(
𝐶noflip𝛿𝑙𝑗

∑
𝑘
𝛿𝑘𝑘 − 𝐶noflip

∑
𝑘
𝛿𝑙𝑘𝛿𝑘𝑗 − 𝐶flip𝑛𝑗

∑
𝑘
𝛿𝑙𝑘𝛿𝑘𝑗

)

‡
= 1

2
𝐶noflip

∑
𝑎𝑏𝑖𝑗

𝜂𝑖𝑗𝑎𝑏𝜂𝑎𝑏𝑖𝑗
∑
𝑘
𝛿𝑘𝑘 −

1
2
𝐶flip

∑
𝑎𝑏𝑐𝑖𝑗

𝑛𝑏𝜂𝑖𝑗𝑎𝑏𝜂𝑎𝑐𝑖𝑗𝛿𝑏𝑐

− 1
2
𝐶noflip

∑
𝑎𝑏𝑖𝑗

𝜂𝑖𝑗𝑎𝑏𝜂𝑎𝑏𝑖𝑗
∑
𝑘
𝛿𝑘𝑘 +

1
2
𝐶noflip

∑
𝑎𝑏𝑖𝑗𝑙

𝜂𝑖𝑗𝑎𝑏𝜂𝑎𝑏𝑖𝑙𝛿𝑙𝑗 +
1
2
𝐶flip

∑
𝑎𝑏𝑖𝑗𝑙

𝑛𝑗𝜂𝑖𝑗𝑎𝑏𝜂𝑎𝑏𝑖𝑙𝛿𝑙𝑗

= 0 − 1
2
𝐶flip

∑
𝑎𝑏𝑖𝑗

𝑛𝑏𝜂𝑖𝑗𝑎𝑏𝜂𝑎𝑏𝑖𝑗 +
1
2
𝐶noflip

∑
𝑎𝑏𝑖𝑗

𝜂𝑖𝑗𝑎𝑏𝜂𝑎𝑏𝑖𝑗 +
1
2
𝐶flip𝑛𝑗

∑
𝑎𝑏𝑖𝑗

𝜂𝑖𝑗𝑎𝑏𝜂𝑎𝑏𝑖𝑗

= 1
2
∑
𝑎𝑏𝑖𝑗

𝜂𝑖𝑗𝑎𝑏𝜂𝑎𝑏𝑖𝑗(𝐶noflip + 𝐶flip(𝑛𝑗 − 𝑛𝑏))

†𝛿𝑎𝑖 = 0 since particle states cannot be hole states and 𝛿𝑎𝑎 = 0.
‡∑

𝑘 𝛿𝑙𝑘𝛿𝑘𝑗 =
∑

𝑘 𝛿𝑙𝑘𝛿𝑗𝑘 = 𝛿𝑙𝑗 .
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5 Conclusion

𝑇 2
2B particle ladder

= 1
8

∑
𝑎𝑏𝑐𝑑𝑖𝑗

𝜂𝑖𝑗𝑎𝑏𝑇
2
𝑎𝑏𝑐𝑑𝜂𝑐𝑑𝑖𝑗 =

1
8

∑
𝑎𝑏𝑐𝑑𝑖𝑗

𝜂𝑖𝑗𝑎𝑏𝜂𝑐𝑑𝑖𝑗

{
+𝐶noflip(𝛿𝑎𝑐𝛿𝑏𝑑 − 𝛿𝑎𝑑𝛿𝑏𝑐)
+𝐶flip𝑛𝑎𝑛𝑏(𝛿𝑎𝑐𝛿𝑏𝑑 − 𝛿𝑎𝑑𝛿𝑏𝑐)

= 1
8

∑
𝑎𝑏𝑐𝑑𝑖𝑗

𝜂𝑖𝑗𝑎𝑏𝜂𝑐𝑑𝑖𝑗
(
𝐶noflip(𝛿𝑎𝑐𝛿𝑏𝑑 − 𝛿𝑎𝑑𝛿𝑏𝑐) + 𝐶flip𝑛𝑎𝑛𝑏(𝛿𝑎𝑐𝛿𝑏𝑑 − 𝛿𝑎𝑑𝛿𝑏𝑐)

)

= 1
8

∑
𝑎𝑏𝑐𝑑𝑖𝑗

𝜂𝑖𝑗𝑎𝑏𝜂𝑐𝑑𝑖𝑗𝐶noflip(𝛿𝑎𝑐𝛿𝑏𝑑 − 𝛿𝑎𝑑𝛿𝑏𝑐) +
1
8

∑
𝑎𝑏𝑐𝑑𝑖𝑗

𝜂𝑖𝑗𝑎𝑏𝜂𝑐𝑑𝑖𝑗𝐶flip𝑛𝑎𝑛𝑏(𝛿𝑎𝑐𝛿𝑏𝑑 − 𝛿𝑎𝑑𝛿𝑏𝑐)

= 1
8
𝐶noflip

∑
𝑎𝑏𝑖𝑗

𝜂𝑖𝑗𝑎𝑏(𝜂𝑎𝑏𝑖𝑗 − 𝜂𝑏𝑎𝑖𝑗) +
1
8
𝐶flip

∑
𝑎𝑏𝑖𝑗

𝑛𝑎𝑛𝑏𝜂𝑖𝑗𝑎𝑏(𝜂𝑎𝑏𝑖𝑗 − 𝜂𝑏𝑎𝑖𝑗)

†
= 1

4
𝐶noflip

∑
𝑎𝑏𝑖𝑗

𝜂𝑖𝑗𝑎𝑏𝜂𝑎𝑏𝑖𝑗 +
1
4
𝐶flip

∑
𝑎𝑏𝑖𝑗

𝑛𝑎𝑛𝑏𝜂𝑖𝑗𝑎𝑏𝜂𝑎𝑏𝑖𝑗

𝑇 2
2B hole ladder

= 1
8

∑
𝑎𝑏𝑖𝑗𝑘𝑙

𝜂𝑖𝑗𝑎𝑏𝑇
2
𝑘𝑙𝑖𝑗𝜂𝑎𝑏𝑘𝑙 =

1
8

∑
𝑎𝑏𝑖𝑗𝑘𝑙

𝜂𝑖𝑗𝑎𝑏𝜂𝑎𝑏𝑘𝑙

{
+𝐶noflip(𝛿𝑘𝑖𝛿𝑙𝑗 − 𝛿𝑘𝑗𝛿𝑙𝑖)
+𝐶flip𝑛𝑖𝑛𝑗(𝛿𝑘𝑖𝛿𝑙𝑗 − 𝛿𝑘𝑗𝛿𝑙𝑖)

= 1
8

∑
𝑎𝑏𝑖𝑗𝑘𝑙

𝜂𝑖𝑗𝑎𝑏𝜂𝑎𝑏𝑘𝑙
(
𝐶noflip(𝛿𝑘𝑖𝛿𝑙𝑗 − 𝛿𝑘𝑗𝛿𝑙𝑖) + 𝐶flip𝑛𝑖𝑛𝑗(𝛿𝑘𝑖𝛿𝑙𝑗 − 𝛿𝑘𝑗𝛿𝑙𝑖)

)

= 1
8

∑
𝑎𝑏𝑖𝑗𝑘𝑙

𝜂𝑖𝑗𝑎𝑏𝜂𝑎𝑏𝑘𝑙𝐶noflip(𝛿𝑘𝑖𝛿𝑙𝑗 − 𝛿𝑘𝑗𝛿𝑙𝑖) +
1
8

∑
𝑎𝑏𝑖𝑗𝑘𝑙

𝜂𝑖𝑗𝑎𝑏𝜂𝑎𝑏𝑘𝑙𝐶flip𝑛𝑖𝑛𝑗(𝛿𝑘𝑖𝛿𝑙𝑗 − 𝛿𝑘𝑗𝛿𝑙𝑖)

= 1
8
𝐶noflip

∑
𝑎𝑏𝑖𝑗

𝜂𝑖𝑗𝑎𝑏(𝜂𝑎𝑏𝑖𝑗 − 𝜂𝑎𝑏𝑗𝑖) +
1
8
𝐶flip

∑
𝑎𝑏𝑖𝑗

𝑛𝑖𝑛𝑗𝜂𝑖𝑗𝑎𝑏(𝜂𝑎𝑏𝑖𝑗 − 𝜂𝑎𝑏𝑗𝑖)

†
= 1

4
𝐶noflip

∑
𝑎𝑏𝑖𝑗

𝜂𝑖𝑗𝑎𝑏𝜂𝑎𝑏𝑖𝑗 +
1
4
𝐶flip

∑
𝑎𝑏𝑖𝑗

𝑛𝑖𝑛𝑗𝜂𝑖𝑗𝑎𝑏𝜂𝑎𝑏𝑖𝑗

†Terms double since antisymmetrised matrix elements satisfy 𝐴𝑝𝑞𝑟𝑠 = −𝐴𝑞𝑝𝑟𝑠.
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𝑇 2
2B ring

= −
∑
𝑎𝑏𝑐𝑖𝑗𝑘

𝜂𝑖𝑗𝑏𝑎𝑇
2
𝑏𝑘𝑐𝑗𝜂𝑐𝑎𝑖𝑘 = −

∑
𝑎𝑏𝑐𝑖𝑗𝑘

𝜂𝑖𝑗𝑏𝑎𝜂𝑐𝑎𝑖𝑘

{
+𝐶noflip(𝛿𝑏𝑐𝛿𝑘𝑗 − 𝛿𝑏𝑗𝛿𝑘𝑐)
+𝐶flip(𝑛𝑏𝑛𝑗𝛿𝑏𝑐𝛿𝑘𝑗 − 𝑛𝑗𝑛𝑐𝛿𝑏𝑗𝛿𝑘𝑐)

= −
∑
𝑎𝑏𝑐𝑖𝑗𝑘

𝜂𝑖𝑗𝑏𝑎𝜂𝑐𝑎𝑖𝑘

{
+𝐶noflip𝛿𝑏𝑐𝛿𝑘𝑗
+𝐶flip𝑛𝑏𝑛𝑗𝛿𝑏𝑐𝛿𝑘𝑗 − 𝐶flip𝑛𝑗𝑛𝑐𝛿𝑏𝑗𝛿𝑘𝑐

= −𝐶noflip
∑
𝑎𝑏𝑐𝑖𝑗𝑘

𝜂𝑖𝑗𝑏𝑎𝜂𝑐𝑎𝑖𝑘𝛿𝑏𝑐𝛿𝑘𝑗 − 𝐶flip
∑
𝑎𝑏𝑐𝑖𝑗𝑘

𝜂𝑖𝑗𝑏𝑎𝜂𝑐𝑎𝑖𝑘𝑛𝑏𝑛𝑗𝛿𝑏𝑐𝛿𝑘𝑗 + 𝐶flip
∑
𝑎𝑏𝑐𝑖𝑗𝑘

𝜂𝑖𝑗𝑏𝑎𝜂𝑐𝑎𝑖𝑘𝑛𝑗𝑛𝑐𝛿𝑏𝑗𝛿𝑘𝑐

= −𝐶noflip
∑
𝑎𝑏𝑖𝑗

𝜂𝑖𝑗𝑏𝑎𝜂𝑏𝑎𝑖𝑗 − 𝐶flip
∑
𝑎𝑏𝑖𝑗

𝑛𝑏𝑛𝑗𝜂𝑖𝑗𝑏𝑎𝜂𝑏𝑎𝑖𝑗 + 𝐶flip
∑
𝑎𝑐𝑖𝑗

𝑛𝑗𝑛𝑐𝜂𝑖𝑗𝑗𝑎𝜂𝑐𝑎𝑖𝑐

= −
∑
𝑎𝑏𝑖𝑗

𝜂𝑖𝑗𝑎𝑏
(
𝐶noflip𝜂𝑎𝑏𝑖𝑗 + 𝐶flip𝑛𝑏𝑛𝑗𝜂𝑎𝑏𝑖𝑗

)
+ 𝐶flip

∑
𝑎𝑏𝑖𝑗

𝑛𝑗𝑛𝑏𝜂𝑖𝑗𝑎𝑗𝜂𝑎𝑏𝑖𝑏

Reduced diagram sum

⟨[𝜂(𝑠), [𝜂(𝑠), 𝑇 2(0)
]]⟩ = −2𝐶flip

∑
𝑎𝑏𝑖𝑗

[
𝜂𝑖𝑗𝑎𝑏

(
𝑇 2

1B
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
1
2
𝜂𝑎𝑏𝑖𝑗(𝑛𝑗 − 𝑛𝑏)

𝑇 2
2B p ladder

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

+1
4
𝜂𝑎𝑏𝑖𝑗𝑛𝑎𝑛𝑏

𝑇 2
2B h ladder

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

+1
4
𝜂𝑎𝑏𝑖𝑗𝑛𝑖𝑛𝑗

𝑇 2
2B ring

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
−𝜂𝑎𝑏𝑖𝑗𝑛𝑏𝑛𝑗

)
+ 𝜂𝑖𝑗𝑎𝑗𝜂𝑎𝑏𝑖𝑏𝑛𝑗𝑛𝑏

]

Φ0sym
= −2𝐶flip

no 𝑡𝑧∑
𝑎𝑏𝑖𝑗

[
Isospin conserving

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

|⟨10|𝜂|10⟩|2 + 1
2
|⟨11|𝜂|11⟩|2 + 1

2
|⟨1−1|𝜂|1−1⟩|2 − (⟨10|𝜂|10⟩ + ⟨00|𝜂|00⟩)(⟨11|𝜂|11⟩ + ⟨1−1|𝜂|1−1⟩)

+ 1
2
|⟨10|𝜂|00⟩|2 + 1

2
|⟨00|𝜂|10⟩|2 − (⟨10|𝜂|00⟩ + ⟨00|𝜂|10⟩)(⟨11|𝜂|11⟩ − ⟨1−1|𝜂|1−1⟩)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Isospin mixing

]
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