Spurious isospin symmetry breaking in the IMSRG

Alexander Farren (supervised by Prof. Stroberg)

University of Notre Dame

June 2023

Alexander Farren (supervised by Prof. Stroberg)

Beta Decay

Three types of β -decay[1]:

- β^+ : $p^+ \rightarrow n^0 + e^+ + v_e$
- β^- : $n^0 \rightarrow p^+ + e^- + \bar{v}_e$
- e⁻ capture: ${}^{A}_{Z}X + e^{-} \rightarrow {}^{A}_{Z-1}Y + v_{e}$

Feynman Diagrams:

Alexander Farren (supervised by Prof. Stroberg)

Nuclear Shell Model

Can approximate nucleon energies as levels or shells

$$E_{n\ell} = \hbar\omega(2n + \ell + 3/2) - V'_0 + \text{Spin-Orbit}$$
 [2]

Alexander Farren (supervised by Prof. Stroberg)

Isospin

Heisenberg introduced isospin t in 1932 because the proton and neutron are interchangeable with respect to

- \bullet mass: proton (938.28 MeV/c^2) and neutron (939.57 MeV/c^2)
- interaction with the nuclear force

Both nucleons have isospin t = 1/2.

 $n^0 \uparrow (t_z = +\frac{1}{2})$ isospin up $p^+ \downarrow (t_z = -\frac{1}{2})$ isospin down Isospin has familiar angular momentum properties:

$$S^{2}|s\rangle = \hbar^{2}s(s+1)|s\rangle \implies T^{2}|t\rangle = t(t+1)|t\rangle$$

Isospin Symmetry Breaking

- Isospin is "rotated" (T_{\pm}) via β decay.
- Some properties of the nucleus are unchanged under this rotation, hence isospin *symmetry*.
- Symmetry is not exact (Coulomb interaction and pion exchange).
- Computational methods encounter *spurious* ISB, i.e. there are sources of ISB not predicted by theory, due to approximations.

Why is this important?

Physicists want to know more about the universe. We are probing the limits of the SM, which predicts unitarity of CKM matrix[3]

$$\begin{pmatrix} |d_{w}\rangle \\ |s_{w}\rangle \\ |b_{w}\rangle \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} |d_{s}\rangle \\ |s_{s}\rangle \\ |b_{s}\rangle \end{pmatrix}$$
$$\implies |V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = 0.9985(05) \stackrel{!}{=} 1 \\ |V_{ud}|^{2} \approx 0.97373(31)$$

by Prof. Stroberg)

Why is this important?

We can measure $V_{\rm ud}!$

$$ft(1+\delta_{\mathsf{R}}')(1+\delta_{\mathsf{NS}}-\delta_{\mathsf{C}}) = \frac{K}{2G_{\mathsf{V}}^{2}|V_{\mathsf{ud}}|^{2}(1+\Delta_{\mathsf{R}}^{\mathsf{V}})}$$
$$|M_{\mathsf{fi}}|^{2} = \left|\langle\psi_{\mathsf{f}}|T_{\pm}|\psi_{\mathsf{i}}\rangle\right|^{2} \equiv (1-\delta_{\mathsf{C}})\left|\langle\psi_{\mathsf{f}}^{\mathsf{iso}}|T_{\pm}|\psi_{\mathsf{i}}^{\mathsf{iso}}\rangle\right|^{2} \underset{t=1}{=} 2(1-\delta_{\mathsf{C}})$$

$$T_{\pm} \implies \delta_{\mathsf{C}} \implies V_{\mathsf{ud}} \implies \mathsf{BSM}$$

Alexander Farren (supervised by Prof. Stroberg)

What was the issue?

 $\begin{array}{l} \mbox{(Left)} \langle T^2(s \to \infty) \rangle \mbox{ should be 2.} \\ \mbox{(Right) Norm} (\left[H(s), T^2(s) \right]_{2 \rm B}) \mbox{ should be 0.} \end{array}$

Alexander Farren (supervised by Prof. Stroberg)

University of Notre Dame

IMSRG

Ab initio calculations for the nucleus are hard:

$$\hat{H}|\psi\rangle = E|\psi\rangle$$

$$\hat{H} = \sum_{i=1}^{N} \frac{1}{2m_i} \hat{P}_i^2 + \hat{V}(\hat{X}_1, ..., \hat{X}_N)$$

Simplify with in-medium similarity renormalisation group [4]:

$$\begin{split} \hat{H}(s) &= \hat{U}(s)\hat{H}(0)\hat{U}^{\dagger}(s) \\ &= \hat{H}^{\mathsf{d}}(s) + \hat{H}^{\mathsf{od}}(s) \end{split}$$

$$\hat{H}(s) \stackrel{s \to \infty}{=} \hat{H}^{\mathsf{d}}(s) \Longrightarrow \mathsf{Useful!}$$

Alexander Farren (supervised by Prof. Stroberg)

IMSRG

 $\langle \Phi_0 | H(s) | \Phi_0 \rangle = \langle \Phi_0 | U(s) H(0) U^{\dagger}(s) | \Phi_0 \rangle \stackrel{s \to \infty}{=} \langle \psi | H(0) | \psi \rangle = E$

niversity of Notre Dame

Alexander Farren (supervised by Prof. Stroberg)

Normal-ordering

In second-quantised form,

$$\hat{H} = \sum_{\mu\lambda} \langle \mu | \hat{H}_{1\mathsf{B}} | \lambda \rangle a_{\mu}^{\dagger} a_{\lambda} + \frac{1}{2} \sum_{\alpha\beta\gamma\delta} \langle \alpha\beta | \hat{H}_{2\mathsf{B}} | \gamma\delta \rangle a_{\alpha}^{\dagger} a_{\beta}^{\dagger} a_{\delta} a_{\gamma} + \dots$$

To make things simpler, adopt following notation.

$$\{a_{\mu}^{\dagger}a_{\lambda}\} = a_{\mu}^{\dagger}a_{\lambda} - \langle \Phi_{0}|a_{\mu}^{\dagger}a_{\lambda}|\Phi_{0}\rangle$$
$$\langle \Phi_{0}|\{a_{\mu}^{\dagger}a_{\lambda}\}|\Phi_{0}\rangle = 0 \implies \textit{normal-ordered}$$

Alexander Farren (supervised by Prof. Stroberg)

University of Notre Dame

Normal-ordering

Alexander Farren (supervised by Prof. Stroberg)

University of Notre Dame

Magnus formulation

Impose definition on transformation

$$U(s) \equiv e^{\Omega(s)} \qquad \frac{d}{ds}U(s) \equiv \eta(s)U(s)$$
$$\implies \hat{\mathcal{O}}(s) \approx \hat{\mathcal{O}}(0) + \left[\eta(s), \hat{\mathcal{O}}(0)\right] + \left[\eta(s), \left[\eta(s), \hat{\mathcal{O}}(0)\right]\right] + \dots$$

University of Notre Dame

Alexander Farren (supervised by Prof. Stroberg)

Locating spurious ISB

To identify sources of spurious ISB, needed to create scenario where no authentic ISB exists:

- Choose ${}^{14}_{8}$ O Hartree-Fock (asymmetric) reference state.
- Swap realistic nuclear force for Minnesota potential

 $\hat{H} \sim$ Kinetic Energy + Minnesota + Spin-Orbit

- Treat only occupied states in reference as 'diagonal'
- Choose White generator $\hat{\eta}(s) = \hat{H}^{\text{od}}/\Delta$ [4]
- \implies See where error in $\langle T^2(s) \rangle$ comes from...

Locating spurious ISB

IMSRG truncation?

(Left) IMSRG truncation is relaxed yet the error does not decrease (Right) Different orbital spaces display different convergence behaviours.

Alexander Farren (supervised by Prof. Stroberg)

Locating spurious ISB

Pinpoint source of ISB in 0s 0p 0d reduced orbital space

Shows problematic term $\langle [\eta(s), [\eta(s), T^2(0)]] \rangle$ persists under IMSRG flow. What is it?

$$\begin{split} \left\langle \left[\eta(s), \left[\eta(s), T^2(0) \right] \right] \right\rangle &= -2 \langle \Phi_0 | \eta_{2\mathsf{B}}(s) T_{1\mathsf{B}}^2(0) \eta_{2\mathsf{B}}(s) | \Phi_0 \rangle \\ &- 2 \langle \Phi_0 | \eta_{2\mathsf{B}}(s) T_{2\mathsf{B}}^2(0) \eta_{2\mathsf{B}}(s) | \Phi_0 \rangle \end{split}$$

University of Notre Dame

Alexander Farren (supervised by Prof. Stroberg)

$$\langle \left[\eta(s), \left[\eta(s), T^2(0) \right] \right] \rangle = -2 \langle \Phi_0 | \eta_{2B}(s) T_{1B}^2(0) \eta_{2B}(s) | \Phi_0 \rangle$$

- 2 \langle \Phi_0 | \eta_{2B}(s) T_{2B}^2(0) \eta_{2B}(s) | \Phi_0 \rangle

(trust me)

University of Notre Dame

Alexander Farren (supervised by Prof. Stroberg)

Alexander Farren (supervised by Prof. Stroberg)

Alexander Farren (supervised by Prof. Stroberg)

$$\langle \left[\eta(s), \left[\eta(s), T^2(0) \right] \right] \rangle = \dots$$

$$= \sum_{abij} \left[\eta_{ijab} \left(\underbrace{\frac{1}{2} \eta_{abij}(n_{\overline{j}} - n_{\overline{b}})}_{-\eta_{a\overline{b}\overline{i}\overline{j}}} + \frac{1}{4} \eta_{a\overline{b}\overline{i}\overline{j}} \overline{n_{\overline{a}}} \overline{n_{\overline{b}}} + \frac{1}{4} \eta_{ab\overline{i}\overline{j}} n_{\overline{i}} n_{\overline{j}} \right]$$

Alexander Farren (supervised by Prof. Stroberg)

University of Notre Dame

$$\langle \left[\eta(s), \left[\eta(s), T^{2}(0) \right] \right] \rangle = \dots$$

$$= \sum_{abij} \left[\eta_{ijab} \left(\underbrace{\frac{1}{2} \eta_{abij}(n_{\overline{j}} - n_{\overline{b}})}_{-\eta_{a\overline{b}i\overline{j}}\overline{n}_{\overline{b}}\overline{n}_{\overline{j}}} + \frac{1}{4} \eta_{ab\overline{i}\overline{j}}\overline{n}_{\overline{a}}\overline{n}_{\overline{b}} + \frac{1}{4} \eta_{ab\overline{i}\overline{j}}\overline{n}_{\overline{i}}\overline{n}_{\overline{j}}} \right] \underbrace{ \left(\underbrace{\frac{1}{2} \eta_{abij}(n_{\overline{j}} - n_{\overline{b}})}_{-\eta_{a\overline{b}i\overline{j}}\overline{n}_{\overline{b}}\overline{n}_{\overline{j}}} + \frac{1}{4} \eta_{ab\overline{i}\overline{j}}\overline{n}_{\overline{b}}\overline{n}_{\overline{j}}} \right] \underbrace{ \left(\underbrace{\frac{1}{2} \eta_{abij}(n_{\overline{j}} - n_{\overline{b}})}_{-\eta_{a\overline{b}i\overline{j}}\overline{n}_{\overline{b}}\overline{n}_{\overline{j}}} + \frac{1}{4} \eta_{ab\overline{i}\overline{j}}\overline{n}_{\overline{b}}\overline{n}_{\overline{j}}} \right) \right] \underbrace{ \left(\underbrace{\frac{1}{2} \eta_{abij}(n_{\overline{j}} - n_{\overline{b}})}_{-\eta_{a\overline{b}i\overline{j}}\overline{n}_{\overline{b}}\overline{n}_{\overline{j}}} + \frac{1}{4} \eta_{ab\overline{i}\overline{b}}\overline{n}_{\overline{j}}\overline{n}_{\overline{b}}\overline{n}_{\overline{j}}} \right) }$$

Alexander Farren (supervised by Prof. Stroberg)

University of Notre Dame

Having evaluated the problematic term, it was found that Møller-Plesset and Epstein-Nesbet partitionings of Δ for $\hat{\eta}(s) = \hat{H}^{\text{od}}/\Delta$ both lead to spurious ISB. When η was switched to the imaginary time generator [4], the error vanished for a symmetric reference and \hat{H}^{od} (and thus η).

$$\implies$$
 makes sense

Sources of spurious ISB

- $\bullet~\Delta$ of White generator
- Reference asymmetry
- H^{od} asymmetry

Remedies for spurious ISB

- $\bullet~\Delta$ of White generator Choose imaginary time instead
- Reference asymmetry Could be fixed with IMSRG(3)?
- H^{od} asymmetry Symmetrise core, diagonalise VS?

Acknowledgements

- Prof. Ragnar Stroberg
- Jonathan Riess
- The Physics and Astronomy Department
- The Naughton Foundation
- A fantastic REU cohort

References

- K. S, Introductory Nuclear Physics. Wiley India, 2008. [Online]. Available: https://books.google.com/books?id=Cxt0CgAAQBAJ.
- [2] P. Cappellaro, Introduction to applied nuclear physics, Massachusetts Institute of Technology: MIT OpenCouseWare, https://ocw.mit.edu/, Spring 2012.
- [3] J. C. Hardy and I. S. Towner, "Superallowed $0^+ \rightarrow 0^+$ nuclear β decays: 2020 critical survey, with implications for V_{ud} and ckm unitarity," *Phys. Rev. C*, vol. 102, p. 045501, 4 Oct. 2020. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevC.102.045501.
- H. Hergert, "A guided tour of ab initio nuclear many-body theory," Frontiers in Physics, vol. 8, Oct. 2020. [Online]. Available: https://doi.org/10.3389%2Ffphy.2020.00379.

Thank you

Alexander Farren (supervised by Prof. Stroberg)

Spurious isospin symmetry breaking in the IMSRG

University of Notre Dame