SFT Homework 2

Problem 1

I think the entries of the wavevector \vec{k} are equal so that $\vec{k}=\frac{|\vec{k}|}{d} \sum_{i} \hat{e}_{i}$. As a result,

$$
\vec{k} \cdot \vec{x}=\frac{|\vec{k}|}{d} \sum_{j} x_{j}
$$

(Not sure if this makes it rotationally invariant, would need $|\vec{x}|^{2}=\sum_{j} x_{j}^{2}$.)

$$
\int_{0}^{\infty} d t e^{-t\left(k^{2}+1 / \xi^{2}\right)}=-\left.\frac{1}{k^{2}+1 / \xi^{2}} e^{-t\left(k^{2}+1 / \xi^{2}\right)}\right|_{0} ^{\infty}=\frac{1}{k^{2}+1 / \xi^{2}}
$$

Rest of question done in notes (p.43).

Problem 2

Derivation in notes (p.44). Interpretation:
"If we perturb the system at the origin, for a system obeying a quadratic free energy $F(\phi)$, the correlator
$<\phi(\vec{x}) \phi(\overrightarrow{0})>$ responds as the solution to the original saddle point equation $0=\left(-\gamma \nabla^{2}+\mu^{2}\right) \tilde{m}+\alpha_{4} \tilde{m}^{3}$ "

Problem 5

We start with the free energy, where $\vec{\nabla}=\frac{\partial}{\partial \vec{y}}$ and $d^{d} x=d x d^{d-1} y$,

$$
F(\phi)=\frac{1}{2} \int d^{d} x\left[\left(\partial_{x} \phi\right)^{2}+\left(\nabla^{2} \phi\right)^{2}+\mu_{0}^{2} \phi^{2}\right]
$$

If we understand Λ_{0} as the maximal magnitude of the momentum k (i.e. the first component of \vec{k} when $|\vec{k}|=\Lambda$) then the Fourier transform of the field in real space is given by

$$
\phi(\vec{x})=\frac{1}{(2 \pi)^{d}} \int_{0}^{\Lambda} d^{d} k e^{i \vec{k} \cdot \vec{x}} \phi_{\vec{k}}=\frac{1}{(2 \pi)^{d}} \int_{0}^{\Lambda_{0}} d k e^{i k x} \int_{0}^{\sqrt{\Lambda^{2}-\Lambda_{0}^{2}}} d^{d-1} q e^{i \vec{q} \cdot \vec{y}} \phi_{\vec{k}}
$$

and the respective gradients are

$$
\begin{aligned}
\partial_{x} \phi & =\frac{1}{(2 \pi)^{d}} \int_{0}^{\Lambda} d^{d} k(i k) e^{i \vec{k} \cdot \vec{x}} \phi_{\vec{k}} \\
\nabla^{2} \phi & =\frac{1}{(2 \pi)^{d}} \int_{0}^{\Lambda} d^{d} k\left(-q^{2}\right) e^{i \vec{k} \cdot \vec{x}} \phi_{\vec{k}}
\end{aligned}
$$

The second one can be found componentwise, with integrand o.t.f. $e^{i q_{\alpha} y_{\alpha}}$ and taking derivative $\frac{\partial}{\partial y_{\beta}}$. Remembering that when we have two ϕ terms multiplying, we must integrate over different momenta $\vec{k}_{1}=\left(k_{1}, \vec{q}_{1}\right)$ and $\vec{k}_{2}=\left(k_{2}, \vec{q}_{2}\right)$:

$$
F\left(\phi_{\vec{k}}\right)=\frac{1}{2(2 \pi)^{2 d}} \int d^{d} x \int d^{d} k_{1} \int d^{d} k_{2}\left(-k_{1} k_{2}+q_{1}^{2} q_{2}^{2}+\mu_{0}^{2}\right) e^{i\left(\vec{k}_{1}+\vec{k}_{2}\right) \cdot \vec{x}} \phi_{\vec{k}_{1}} \phi_{\vec{k}_{2}}
$$

Using the definition of the delta function $\delta^{d}(\vec{a}+\vec{b})=\frac{1}{(2 \pi)^{d}} \int d^{d} x e^{i(\vec{a}+\vec{b}) \cdot \vec{x}}$, we get

$$
F\left(\phi_{\vec{k}}\right)=\frac{1}{2(2 \pi)^{d}} \int d^{d} k\left(k^{2}+q^{4}+\mu_{0}^{2}\right) \phi_{\vec{k}} \phi_{-\vec{k}}
$$

We perform the scaling

$$
k^{\prime}=\zeta k \quad \vec{q}^{\prime}=\zeta^{a} \vec{q} \quad \phi_{\vec{k}^{\prime}}^{\prime}=\zeta^{-b} \phi_{\vec{k}}
$$

while imposing that the new free energy $F\left(\phi_{\vec{k}^{\prime}}^{\prime}\right)$ have the same functional form as $F\left(\phi_{\vec{k}}\right)$ with coefficients of 1 in front of $k^{\prime 2}$ and $q^{\prime 4}$. We get $d^{d} k=d^{d} k^{\prime} \zeta^{-1-(d-1) a}$ with each $d q$ contributing ζ^{-a},

$$
\begin{aligned}
F\left(\phi_{\vec{k}^{\prime}}^{\prime}\right) & =\frac{1}{2(2 \pi)^{d}} \int d^{d} k \zeta^{-1+(1-d) a}\left(\zeta^{-2} k^{\prime 2}+\zeta^{-4 a} q^{\prime 4}+\mu_{0}^{2}\right) \zeta^{2 b} \phi_{\vec{k}^{\prime}}^{\prime} \phi_{\vec{k}^{\prime}}^{\prime} \\
& =\frac{1}{2(2 \pi)^{d}} \int d^{d} k \zeta^{2 b-1-d a-3 a}\left(\zeta^{4 a-2} k^{\prime 2}+q^{\prime 4}+\zeta^{4 a} \mu_{0}^{2}\right) \phi_{\vec{k}^{\prime}}^{\prime} \phi_{\vec{k}^{\prime}}^{\prime} \\
\Longrightarrow 4 a-2=0 \Longrightarrow a=1 / 2 & \Longrightarrow 2 b-1-d / 2-3 / 2=0 \Longrightarrow b=(5+d) / 4 \\
& \Longrightarrow \mu^{2}(\zeta)=\zeta^{2} \mu_{0}^{2}
\end{aligned}
$$

Returning to real space

$$
F(\phi)=\frac{1}{2} \int d^{d} x\left[\left(\partial_{x} \phi\right)^{2}+\left(\nabla^{2} \phi\right)^{2}+\mu_{0}^{2} \phi^{2}\right]
$$

This time the scaling is the opposite

$$
x^{\prime}=x / \zeta \quad \vec{y}^{\prime}=\zeta^{-a} \vec{y} \quad \phi^{\prime}\left(\vec{x}^{\prime}\right)=\zeta^{\Delta_{\phi}} \phi(\vec{x})
$$

which gives $\partial_{x}=\zeta^{-1} \partial_{x^{\prime}}$ and $\vec{\nabla}^{\prime}=\zeta^{-a} \vec{\nabla}$. Thus

$$
F\left(\phi^{\prime}\left(\vec{x}^{\prime}\right)\right)=\frac{1}{2} \int d^{d} x^{\prime} \zeta^{1+(d-1) a-2-2 \Delta_{\phi}}\left[\left(\partial_{x^{\prime}} \phi^{\prime}\right)^{2}+\left(\nabla^{\prime 2} \phi^{\prime}\right)^{2}+\mu(\zeta)^{2} \phi^{\prime 2}\right]
$$

This means $\Delta_{\phi}=(d-3) / 4$ since $a=1 / 2$. Next we look at $g_{n}=\zeta^{\Delta_{g n}} g_{0, n}$:

$$
\begin{aligned}
& \int d^{d} x g_{0, n} \phi^{2 n}=\int d^{d} x^{\prime} \zeta^{1+(d-1) a-2 n \Delta_{\phi}-\Delta_{g_{n}}} g_{n} \phi^{\prime 2 n} \\
\Longrightarrow & \Delta_{g_{n}}=\frac{1}{2}(2+d-1-d n+3 n)=\frac{1}{2}(1+3 n+d(1-n))
\end{aligned}
$$

If we are looking at $g_{4}(\zeta)$ then $n=2$ and we get

$$
\Delta_{g_{4}}=\frac{1}{2}(7-d) \begin{cases}\Delta_{g_{4}}<0 & d>7 \Longrightarrow \\ \Delta_{g_{4}}>0 & d<7 \Longrightarrow \text { vanishes after many RG flows thus irrelevant } \\ \hline\end{cases}
$$

Problem 6

We start with free energy

$$
F\left(\psi, A_{i}\right)=\int d^{d} x\left[\frac{1}{4} F_{i j} F^{i j}+\left|\partial_{i} \psi-i e A_{i} \psi\right|^{2}+\mu^{2}|\psi|^{2}\right]
$$

Applying the rescalings

$$
\begin{gathered}
x_{i}^{\prime}=x_{i} / \zeta \Longrightarrow \partial_{i}^{\prime}=\zeta \partial_{i} \quad d^{d} x=d^{d} x^{\prime} \zeta^{d} \\
A_{i}^{\prime}=\zeta^{\Delta_{A}} A_{i} \quad \psi^{\prime}\left(x_{i}^{\prime}\right)=\zeta^{\Delta_{\psi}} \psi\left(x_{i}\right)
\end{gathered}
$$

The first term scales as

$$
d^{d} x F_{i j} F^{i j}=\zeta^{d-2-2 \Delta_{A}} d^{d} x^{\prime} F_{i j}^{\prime} F^{\prime i j}
$$

The second term scales as

$$
\begin{aligned}
d^{d} x\left|\partial_{i} \psi-i e A_{i} \psi\right|^{2} & =d^{d} x\left[\left|\partial_{i} \psi\right|^{2}+\text { mixed terms }+\left|e A_{i} \psi\right|^{2}\right] \\
& =\zeta^{d} d^{d} x^{\prime}\left[\zeta^{-2-2 \Delta_{\psi}}\left|\partial_{i}^{\prime} \psi^{\prime}\right|^{2}+\ldots+\zeta^{-2 \Delta_{A}-2 \Delta_{\psi}}\left|e A_{i}^{\prime} \psi^{\prime}\right|^{2}\right]
\end{aligned}
$$

Requiring that the gradient terms ($F_{i j} F^{i j}$ and $\partial \psi$) remain canonically normalised,

$$
\begin{gathered}
d-2-2 \Delta_{A}=0 \quad d-2-2 \Delta_{\psi}=0 \\
\Longrightarrow 2 \Delta_{A}=2 \Delta_{\psi}=d-2
\end{gathered}
$$

This tells us that the interaction coupling scaling dimension is

$$
d-2 \Delta_{A}-2 \Delta_{\psi}=4-d
$$

which is relevant for $d>d_{c}$, irrelevant for $d<d_{c}$ where $d_{c}=4$

