
SFT Homework 1 Alexander Farren

Problem 1

We have

𝑍 =
∑︁
𝑠1=±1

...
∑︁

𝑠𝑁=±1

𝑁∏
𝑖=1

exp(𝛽𝐽𝑠𝑖𝑠𝑖+1 +
1
2
𝛽𝐵(𝑠𝑖 + 𝑠𝑖+1)) =

∑︁
𝑠1=±1

...
∑︁

𝑠𝑁=±1

𝑁∏
𝑖=1

𝑇𝑠𝑖 ,𝑠𝑖+1

If we consider 𝑠𝑖/𝑠𝑖+1 as the index denoting 𝑇’s row/column, then

𝑍 =
∑︁
𝑠1=±1

∑︁
𝑠2=±1

...
∑︁

𝑠𝑁=±1
𝑇𝑠1,𝑠2𝑇𝑠2,𝑠3 ...𝑇𝑠𝑁 ,𝑠1 =

∑︁
𝑖=±

∑︁
𝑗=±1

∑︁
𝑘=±1

...
∑︁
𝑙=±1

𝑇𝑖 𝑗𝑇𝑗 𝑘 ...𝑇𝑙𝑖

which is just
𝑍 =

∑︁
𝑖=±1

(𝑇𝑁 )𝑖𝑖 = tr(𝑇𝑁 ) □.

In matrix form, with eigenvalues 𝜆±

𝑇 =

(
𝑒𝛽𝐽−𝛽𝐵 𝑒−𝛽𝐽

𝑒−𝛽𝐽 𝑒𝛽𝐽+𝛽𝐵

)
=⇒ det(𝑇 − 𝜆±𝐼) = 0

det(𝑇 − 𝜆±𝐼) = 𝜆2
± − 𝑒𝛽𝐽 (𝑒𝛽𝐵 + 𝑒−𝛽𝐵)𝜆± + (𝑒2𝛽𝐽 − 𝑒−2𝛽𝐽) = 0

𝜆± = 𝑒𝛽𝐽 cosh(𝛽𝐵) ±
√︃
𝑒2𝛽𝐽 cosh2(𝛽𝐵) − 2 sinh2(2𝛽𝐽) □.

Having found the eigenvalues of 𝑇 , let 𝑀 be the matrix which diagonalises 𝑇 such that 𝐷 = 𝑀𝑇𝑀−1

where 𝐷 = diag(𝜆−, 𝜆+). Since tr(𝐴𝐵𝐶) = tr(𝐵𝐶𝐴), we have

𝑍 = tr(𝑇𝑁 ) = tr(𝑀−1𝐷𝑀𝑀−1𝐷...𝑀−1𝐷𝑀) = tr(𝑀−1𝐷𝑁𝑀) = tr(𝐷𝑁 ) = 𝜆𝑁+ + 𝜆𝑁−

But 𝜆+ > 𝜆− since 𝑒𝛽𝐽 cosh(𝛽𝐵) > 0 for real 𝛽𝐽 and 𝛽𝐵, then lim𝑁→∞ 𝑍 ≈ 𝜆𝑁+ . The magnetisation is

�̃� =
1
𝑁𝛽

𝜕

𝜕𝐵
ln 𝑍 =

1
𝜆+𝛽

𝜕𝜆+
𝜕𝐵

Note that 𝜆+
��
𝐵=0 = 2 cosh 𝛽𝐽 ≠ 0 for real 𝛽𝐽. We must find

𝜕𝜆+
𝜕𝐵

= 𝛽(𝑒𝛽𝐽 sinh(𝛽𝐵) + 𝑒2𝛽𝐽 cosh(𝛽𝐵) sinh(𝛽𝐵) [𝑒2𝛽𝐽 cosh2(𝛽𝐵) − 2 sinh(2𝛽𝐽)]−1/2)

=⇒ �̃�
��
𝐵=0 =

1
𝜆+𝛽

𝜕𝜆+
𝜕𝐵

��
𝐵=0 = 0 ∀𝛽𝐽 ∈ R

If the magnetisation is always 0, then it is constant and it along with its derivatives are not discontinuous
in 𝛽. This is synonymous with there being no phases transitions as a function 𝛽 or temperature 𝑇 .
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Problem 2

Given the approximation 𝑠𝑖𝑠 𝑗 ≈ �̃�(𝑠𝑖 + 𝑠 𝑗 ) − �̃�2, with 𝑞 the number of nearest neighbour pairs per
site, and < 𝑖 𝑗 > is the set of nearest neighbour pairs (not sites),

𝐸 = −𝐵
𝑁∑︁
𝑖=1

𝑠𝑖 − 𝐽
∑︁
<𝑖 𝑗>

𝑠𝑖𝑠 𝑗 = −𝐵
𝑁∑︁
𝑖=1

𝑠𝑖 −
1
2
𝐽𝑞�̃�

𝑁∑︁
𝑖, 𝑗=1

(𝑠𝑖 + 𝑠 𝑗 ) +
1
2
𝑁𝑞𝐽�̃�2

= −(𝐽𝑞�̃� + 𝐵)
𝑁∑︁
𝑖=1

𝑠𝑖 +
1
2
𝑁𝑞𝐽�̃�2

=⇒ 𝑍 =
∑︁
{𝑠𝑖}

𝑒−𝛽𝐸 [𝑠𝑖] = 𝑒−𝛽
1
2 𝑁𝑞𝐽�̃�2 ∑︁

{𝑠𝑖}
𝑒𝛽(𝐽𝑞�̃�+𝐵)∑𝑖 𝑠𝑖 = 𝑒−𝛽

1
2 𝑁𝑞𝐽�̃�2 ∑︁

𝑠1=±1
...

∑︁
𝑠𝑁=±1

𝑁∏
𝑖=1

𝑒𝛽(𝐽𝑞�̃�+𝐵)𝑠𝑖

= 𝑒−𝛽
1
2 𝑁𝑞𝐽�̃�2 (𝑒𝛽(𝐽𝑞�̃�+𝐵) + 𝑒−𝛽(𝐽𝑞�̃�+𝐵))𝑁 =−𝛽 1

2 𝑁𝑞𝐽�̃�2
2𝑁 cosh𝑁 (𝛽(𝐽𝑞�̃� + 𝐵)) □.

Finding the equilibrium magnetisation:

�̃� =
1
𝑁𝛽

𝜕

𝜕𝐵
ln 𝑍 =

1
𝛽

𝜕

𝜕𝐵
ln cosh(𝛽(𝐵 + 𝐽𝑞�̃�))

=
𝛽 sinh(𝛽(𝐵 + 𝐽𝑞�̃�))
𝛽 cosh(𝛽(𝐵 + 𝐽𝑞�̃�)) = tanh(𝛽(𝐵 + 𝐽𝑞�̃�)) □. (1)

For 𝐵 = 0, we have �̃� = tanh(𝐽𝑞�̃�). Note that 𝛽𝐽𝑞 =
𝑇𝑐
𝑇

such that 𝑇 < 𝑇𝑐 =⇒ 𝛽𝐽𝑞 > 1 and vice versa.

For 𝑇 < 𝑇𝑐 there are two solutions �̃� = ±𝑚0. For 𝑇 > 𝑇𝑐 there is only one solution �̃�. In particular as
𝑇 → ∞, 𝛽 → 0 and �̃� → 0 by the consistency equation (1).

Problem 3

By completing the square and remembering the Gaussian integral
∫ ∞
−∞ 𝑒−𝑎𝑥

2
𝑑𝑥 =

√︁
𝜋
𝑎

,∫ ∞

−∞
𝑒−𝑎𝑥

2+𝑏𝑥 =

√︂
𝜋

𝑎
𝑒

𝑏2
4𝑎 =⇒ 𝑒

𝛽𝐽𝛼2
2𝑁 =

√︂
𝑁𝛽𝐽

2𝜋

∫ ∞

−∞
𝑑𝑥 𝑒−

𝑁𝛽𝐽

2 𝑥2+𝛼𝛽𝐽𝑥

Starting with 𝑍 =
∑

{𝑠𝑖} 𝑒
−𝛽𝐸 [𝑠𝑖] and letting 𝑘 =

∑𝑁
𝑖=1 𝑠𝑖 we can write

𝑍 =
∑︁
𝑘

𝑒𝛽𝐵𝑘+
𝛽𝐽

2𝑁 𝑘2
=
∑︁
𝑘

𝑒𝛽𝐵𝑘

√︂
𝑁𝛽𝐽

2𝜋

∫ ∞

−∞
𝑑𝑥 𝑒−

𝑁𝛽𝐽

2 𝑥2+𝑘𝛽𝐽𝑥

=

√︂
𝑁𝛽𝐽

2𝜋

∫ ∞

−∞
𝑑𝑥 𝑒−

𝑁𝛽𝐽

2 𝑥2 ∑︁
𝑘

𝑒𝑘𝛽(𝐵+𝐽𝑥)
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As shown in Problem 2,∑︁
𝑘

𝑒𝛽(𝐵+𝐽𝑥)𝑘 =
∑︁
{𝑠𝑖}

𝑒𝛽(𝐵+𝐽𝑥)
∑

𝑖 𝑠𝑖 = 2𝑁 cosh𝑁 (𝛽(𝐵 + 𝐽𝑥))

Thus we get

𝑍 =

√︂
𝑁𝛽𝐽

2𝜋

∫ ∞

−∞
𝑑𝑥 𝑒−

𝑁𝛽𝐽

2 𝑥2
2𝑁 cosh𝑁 (𝛽(𝐵 + 𝐽𝑥)) =

√︂
𝑁𝛽𝐽

2𝜋

∫ ∞

−∞
𝑑𝑥 𝑒−

𝑁𝛽𝐽

2 𝑥2+𝑁 ln(2 cosh(𝛽(𝐵+𝐽𝑥)))

=

√︂
𝑁𝛽𝐽

2𝜋

∫ ∞

−∞
𝑑𝑥 𝑒−𝑁𝑆(𝑥) where 𝑆(𝑥) = 𝛽𝐽

2
𝑥2 − ln(2 cosh(𝛽(𝐵 + 𝐽𝑥))) □.

Taking the derivative and setting to 0 yields

𝑑𝑆

𝑑𝑥

��
𝑥∗ = 𝛽𝐽𝑥∗ − 𝛽𝐽 tanh(𝛽(𝐵 + 𝐽𝑥∗)) = 0 =⇒ 𝑥∗ = tanh(𝛽𝐵 + 𝛽𝐽𝑥∗)

In the limit of large 𝑁: 𝑍 ≈ 𝑒−𝑁𝛽 𝑓 (�̃�) . If we make the identification 𝑆(𝑥) = 𝛽 𝑓 (𝑥) (where 𝑓 (𝑚) is the
effective free energy per unit spin), then 𝑆 achieves a minimum whenever 𝑓 does (i.e. 𝑥∗ = �̃�). This
explains why they follow the same self-consistency equation (1) up to a factor.

Problem 4

Below are sketches on Desmos for 𝛼6 = −𝛼4 = 1 and 𝛼2 = 0.5, 0.3, 0 from left to right. The system

𝑓 (𝑚) = 𝛼2𝑚
2 + 𝛼4𝑚

4 + 𝛼6𝑚
6

undergoes a first order phase transition when the first derivative of the free energy 𝑓 (𝑚) is discontinuous.
Equivalently, �̃� which minimises 𝑓 (𝑚) is discontinuous. The phase transition occurs when �̃� jumps
between two values.

𝜕 𝑓

𝜕𝑚

���
�̃�
= 2𝛼2�̃� + 4𝛼4�̃�

3 + 6𝛼6�̃�
5 = 0

Either �̃� = 0 or 2𝛼2 + 4𝛼4�̃�
2 + 6𝛼6�̃�

4 = 0 =⇒ �̃�2 = − 𝛼4
3𝛼6

±
√︃
( 𝛼4

3𝛼6
)2 − 𝛼2

3𝛼6
≡ 𝑚2

±.
The solutions 𝑚± only exist when the discriminant ( 𝛼4

3𝛼6
)2 − 𝛼2

3𝛼6
is non-negative (and when 𝑚2

± ≥ 0). This

first occurs when the discriminant is zero, or when 𝛼2 =
𝛼2

4
3𝛼6

. For the values defining the above graphs,
this would be 𝛼2 = 0.33. However these correspond to non-zero local minima and not the ’dips’ which
appear after 𝛼2 = 0.25 =

𝛼2
4

4𝛼6
(?).

3



Phase diagram in 𝛼4 − 𝛼2 plane. The red region is when the discriminant is negative, and �̃� = 0 whereas
in the green region �̃� = 𝑚±. The phase boundary is 𝛼2 = 1

3𝛼6
𝛼2

4.

The jump in magnetisation between 0 and 𝑚± happens when 𝛼2 = 1
3𝛼6

𝛼2
4 =⇒ 𝑚2

± = −𝛼2
𝛼4

. Thus the jump

is 𝑚0 =
√︁
−𝛼2/𝛼4 where �̃� = 0 → �̃� = ±𝑚0.

Finding the critical exponents for 𝛼4 = 0 (𝐵 = 0 for 𝛼, 𝛽, whereas 𝐵 ≠ 0 for 𝛾, 𝛿):

𝑐 ∼ |𝑇 − 𝑇𝑐 |−𝛼 �̃� ∼ |𝑇 − 𝑇𝑐 |𝛽 𝜒 ∼ |𝑇 − 𝑇𝑐 |−𝛾 �̃� ∼ 𝐵
1
𝛿

We have already found �̃�2 =
√︃
− 𝛼2

3𝛼6
=⇒ 𝛽 = 1/4 . Using Mathematica 𝛼 = 1/2 .

Near the critical point, for 𝐵 ≠ 0, 𝑓 (𝑚) ≈ −𝐵𝑚 + 𝛼6𝑚
6 =⇒ �̃� ∼ 𝐵

1
5 =⇒ 𝛿 = 5 . It looks like 𝛾 = 1

as in the notes.

Problem 5

I think this is the same analysis as in the notes (starting page 12) with the added possibility of a phase
so that �̃� ∼ �̃�𝑒𝑖𝜙 minimises the free energy. Maybe spontaneous symmetry breaking is then related to
complex conjugating as well as the usual Z2 symmetry.
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Problem 6 (by Luke Hodgkiss)

Problem 7

We are given 𝜓(𝑥) = 1
𝑉
𝑒𝑖𝑘𝑥𝜓𝑘 = 𝑎𝑘𝑒

2𝑖𝑘𝑥 where I have defined 𝑎𝑘 =
𝐴𝑘

𝑉
. Thus

𝜓′(𝑥) = 2𝑖𝑘𝜓(𝑥) 𝜓′′(𝑥) = −4𝑘2𝜓(𝑥)

which tells us

𝐹 =

∫
𝑑𝑥(𝛼2 |𝜓(𝑥) |2 + 𝛼4 |𝜓(𝑥) |4 − 𝛾 |𝜓′(𝑥) |2 + 𝜅 |𝜓′′(𝑥) |2)

=

∫
𝑑𝑥 |𝑎𝑘 |2(𝛼2 + 𝛼4 |𝑎𝑘 |2 − 4𝑘2𝛾 + 16𝑘4𝜅)

The value of �̃� which minimises 𝐹 is given by 𝛿𝐹
𝛿𝑘

���
�̃�
= 0. Thus, assuming that 𝑎𝑘 is a constant and

remembering that 𝑘 = ±𝑘0 =⇒ �̃� = ±𝑘0,

𝛿𝐹

𝛿𝑘

���
�̃�
= −8�̃�𝛾 + 64�̃�3𝜅 = 0 =⇒ �̃� = 0 or ±

√︂
𝛾

8𝜅
=⇒ 𝑘0 = 0 or

√︂
𝛾

8𝜅

No idea how to relate 𝛼2 to the other constants if the (discontinuous?) order parameter is 𝑘? If the order
parameter is 𝜓(𝑥) then you need to do 𝛿𝜓𝜓∗

𝛿𝜓
etc...?
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Problem 8

We have 𝑓 (𝑚) = 𝛼2𝑚
2 + 𝛼2𝑛𝑚

2𝑛 so that the equilibrium magnetisations are

�̃� = 0 or �̃� =

(
𝑇𝑐 − 𝑇

𝛼2𝑛𝑛

) 1
2𝑛−2

=⇒ 𝛽∗ =
1

2𝑛 − 2

Here 𝛽∗ denotes the critical exponent while 𝛽 = 1/𝑇 . Using Mathematica I showed 𝛼 = 1 − 2𝛽∗. □
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