Problem 1

We have

$$
Z=\sum_{s_{1}= \pm 1} \ldots \sum_{s_{N}= \pm 1} \prod_{i=1}^{N} \exp \left(\beta J s_{i} s_{i+1}+\frac{1}{2} \beta B\left(s_{i}+s_{i+1}\right)\right)=\sum_{s_{1}= \pm 1} \ldots \sum_{s_{N}= \pm 1} \prod_{i=1}^{N} T_{s_{i}, s_{i+1}}
$$

If we consider s_{i} / s_{i+1} as the index denoting T 's row/column, then

$$
Z=\sum_{s_{1}= \pm 1} \sum_{s_{2}= \pm 1} \ldots \sum_{s_{N}= \pm 1} T_{s_{1}, s_{2}} T_{s_{2}, s_{3}} \ldots T_{s_{N}, s_{1}}=\sum_{i= \pm} \sum_{j= \pm 1} \sum_{k= \pm 1} \ldots \sum_{l= \pm 1} T_{i j} T_{j k} \ldots T_{l i}
$$

which is just

$$
Z=\sum_{i= \pm 1}\left(T^{N}\right)_{i i}=\operatorname{tr}\left(T^{N}\right)
$$

In matrix form, with eigenvalues $\lambda_{ \pm}$

$$
\begin{gathered}
T=\left(\begin{array}{cc}
e^{\beta J-\beta B} & e^{-\beta J} \\
e^{-\beta J} & e^{\beta J+\beta B}
\end{array}\right) \Longrightarrow \operatorname{det}\left(T-\lambda_{ \pm} I\right)=0 \\
\operatorname{det}\left(T-\lambda_{ \pm} I\right)=\lambda_{ \pm}^{2}-e^{\beta J}\left(e^{\beta B}+e^{-\beta B}\right) \lambda_{ \pm}+\left(e^{2 \beta J}-e^{-2 \beta J}\right)=0 \\
\lambda_{ \pm}=e^{\beta J} \cosh (\beta B) \pm \sqrt{e^{2 \beta J} \cosh ^{2}(\beta B)-2 \sinh ^{2}(2 \beta J)}
\end{gathered}
$$

Having found the eigenvalues of T, let M be the matrix which diagonalises T such that $D=M T M^{-1}$ where $D=\operatorname{diag}\left(\lambda_{-}, \lambda_{+}\right)$. Since $\operatorname{tr}(A B C)=\operatorname{tr}(B C A)$, we have

$$
Z=\operatorname{tr}\left(T^{N}\right)=\operatorname{tr}\left(M^{-1} D M M^{-1} D \ldots M^{-1} D M\right)=\operatorname{tr}\left(M^{-1} D^{N} M\right)=\operatorname{tr}\left(D^{N}\right)=\lambda_{+}^{N}+\lambda_{-}^{N}
$$

But $\lambda_{+}>\lambda_{-}$since $e^{\beta J} \cosh (\beta B)>0$ for real βJ and βB, then $\lim _{N \rightarrow \infty} Z \approx \lambda_{+}^{N}$. The magnetisation is

$$
\tilde{m}=\frac{1}{N \beta} \frac{\partial}{\partial B} \ln Z=\frac{1}{\lambda_{+} \beta} \frac{\partial \lambda_{+}}{\partial B}
$$

Note that $\left.\lambda_{+}\right|_{B=0}=2 \cosh \beta J \neq 0$ for real βJ. We must find

$$
\begin{aligned}
\frac{\partial \lambda_{+}}{\partial B}=\beta\left(e^{\beta J} \sinh (\beta B)+\right. & \left.e^{2 \beta J} \cosh (\beta B) \sinh (\beta B)\left[e^{2 \beta J} \cosh ^{2}(\beta B)-2 \sinh (2 \beta J)\right]^{-1 / 2}\right) \\
& \left.\Longrightarrow \tilde{m}\right|_{B=0}=\left.\frac{1}{\lambda_{+} \beta} \frac{\partial \lambda_{+}}{\partial B}\right|_{B=0}=0 \quad \forall \beta J \in \mathbb{R}
\end{aligned}
$$

If the magnetisation is always 0 , then it is constant and it along with its derivatives are not discontinuous in β. This is synonymous with there being no phases transitions as a function β or temperature T.

Problem 2

Given the approximation $s_{i} s_{j} \approx \tilde{m}\left(s_{i}+s_{j}\right)-\tilde{m}^{2}$, with q the number of nearest neighbour pairs per site, and $\langle i j\rangle$ is the set of nearest neighbour pairs (not sites),

$$
\begin{aligned}
& E=-B \sum_{i=1}^{N} s_{i}-J \sum_{<i j>} s_{i} s_{j}=-B \sum_{i=1}^{N} s_{i}-\frac{1}{2} J q \tilde{m} \sum_{i, j=1}^{N}\left(s_{i}+s_{j}\right)+\frac{1}{2} N q J \tilde{m}^{2} \\
&=-(J q \tilde{m}+B) \sum_{i=1}^{N} s_{i}+\frac{1}{2} N q J \tilde{m}^{2} \\
& \Longrightarrow Z=\sum_{\left\{s_{i}\right\}} e^{-\beta E\left[s_{i}\right]}=e^{-\beta \frac{1}{2} N q J \tilde{m}^{2}} \sum_{\left\{s_{i}\right\}} e^{\beta(J q \tilde{m}+B) \sum_{i} s_{i}}=e^{-\beta \frac{1}{2} N q J \tilde{m}^{2}} \sum_{s_{1}= \pm 1} \ldots \sum_{s_{N}= \pm 1} \prod_{i=1}^{N} e^{\beta(J q \tilde{m}+B) s_{i}} \\
&=e^{-\beta \frac{1}{2} N q J \tilde{m}^{2}}\left(e^{\beta(J q \tilde{m}+B)}+e^{-\beta(J q \tilde{m}+B)}\right)^{N}=-\beta \frac{1}{2} N q J \tilde{m}^{2} \\
& 2^{N} \cosh ^{N}(\beta(J q \tilde{m}+B)) .
\end{aligned}
$$

Finding the equilibrium magnetisation:

$$
\begin{align*}
\tilde{m} & =\frac{1}{N \beta} \frac{\partial}{\partial B} \ln Z=\frac{1}{\beta} \frac{\partial}{\partial B} \ln \cosh (\beta(B+J q \tilde{m})) \\
& =\frac{\beta \sinh (\beta(B+J q \tilde{m}))}{\beta \cosh (\beta(B+J q \tilde{m}))}=\tanh (\beta(B+J q \tilde{m})) \tag{1}
\end{align*}
$$

For $B=0$, we have $\tilde{m}=\tanh (J q \tilde{m})$. Note that $\beta J q=\frac{T_{c}}{T}$ such that $T<T_{c} \Longrightarrow \beta J q>1$ and vice versa.

Figure 43: $\tanh (J q m \beta)$ for $J q \beta<1$

Figure 44: $\tanh (J q m \beta)$ for $J q \beta>1$

For $T<T_{c}$ there are two solutions $\tilde{m}= \pm m_{0}$. For $T>T_{c}$ there is only one solution \tilde{m}. In particular as $T \rightarrow \infty, \beta \rightarrow 0$ and $\tilde{m} \rightarrow 0$ by the consistency equation (1).

Problem 3

By completing the square and remembering the Gaussian integral $\int_{-\infty}^{\infty} e^{-a x^{2}} d x=\sqrt{\frac{\pi}{a}}$,

$$
\int_{-\infty}^{\infty} e^{-a x^{2}+b x}=\sqrt{\frac{\pi}{a}} e^{\frac{b^{2}}{4 a}} \Longrightarrow e^{\frac{\beta J \alpha^{2}}{2 N}}=\sqrt{\frac{N \beta J}{2 \pi}} \int_{-\infty}^{\infty} d x e^{-\frac{N \beta J}{2} x^{2}+\alpha \beta J x}
$$

Starting with $Z=\sum_{\left\{s_{i}\right\}} e^{-\beta E\left[s_{i}\right]}$ and letting $k=\sum_{i=1}^{N} s_{i}$ we can write

$$
\begin{aligned}
Z & =\sum_{k} e^{\beta B k+\frac{\beta J}{2 N} k^{2}}=\sum_{k} e^{\beta B k} \sqrt{\frac{N \beta J}{2 \pi}} \int_{-\infty}^{\infty} d x e^{-\frac{N \beta J}{2} x^{2}+k \beta J x} \\
& =\sqrt{\frac{N \beta J}{2 \pi}} \int_{-\infty}^{\infty} d x e^{-\frac{N \beta J}{2} x^{2}} \sum_{k} e^{k \beta(B+J x)}
\end{aligned}
$$

As shown in Problem 2,

$$
\sum_{k} e^{\beta(B+J x) k}=\sum_{\left\{s_{i}\right\}} e^{\beta(B+J x) \sum_{i} s_{i}}=2^{N} \cosh ^{N}(\beta(B+J x))
$$

Thus we get

$$
\begin{align*}
Z & =\sqrt{\frac{N \beta J}{2 \pi}} \int_{-\infty}^{\infty} d x e^{-\frac{N \beta J}{2} x^{2}} 2^{N} \cosh ^{N}(\beta(B+J x))=\sqrt{\frac{N \beta J}{2 \pi}} \int_{-\infty}^{\infty} d x e^{-\frac{N \beta J}{2} x^{2}+N \ln (2 \cosh (\beta(B+J x)))} \\
& =\sqrt{\frac{N \beta J}{2 \pi}} \int_{-\infty}^{\infty} d x e^{-N S(x)} \quad \text { where } \quad S(x)=\frac{\beta J}{2} x^{2}-\ln (2 \cosh (\beta(B+J x))) \tag{ㅁ.}
\end{align*}
$$

Taking the derivative and setting to 0 yields

$$
\left.\frac{d S}{d x}\right|_{x^{*}}=\beta J x^{*}-\beta J \tanh \left(\beta\left(B+J x^{*}\right)\right)=0 \Longrightarrow x^{*}=\tanh \left(\beta B+\beta J x^{*}\right)
$$

In the limit of large $N: Z \approx e^{-N \beta f(\tilde{m})}$. If we make the identification $S(x)=\beta f(x)$ (where $f(m)$ is the effective free energy per unit spin), then S achieves a minimum whenever f does (i.e. $x^{*}=\tilde{m}$). This explains why they follow the same self-consistency equation (1) up to a factor.

Problem 4

Below are sketches on Desmos for $\alpha_{6}=-\alpha_{4}=1$ and $\alpha_{2}=0.5,0.3,0$ from left to right. The system

undergoes a first order phase transition when the first derivative of the free energy $f(m)$ is discontinuous. Equivalently, \tilde{m} which minimises $f(m)$ is discontinuous. The phase transition occurs when \tilde{m} jumps between two values.

$$
\left.\frac{\partial f}{\partial m}\right|_{\tilde{m}}=2 \alpha_{2} \tilde{m}+4 \alpha_{4} \tilde{m}^{3}+6 \alpha_{6} \tilde{m}^{5}=0
$$

Either $\tilde{m}=0$ or $2 \alpha_{2}+4 \alpha_{4} \tilde{m}^{2}+6 \alpha_{6} \tilde{m}^{4}=0 \Longrightarrow \tilde{m}^{2}=-\frac{\alpha_{4}}{3 \alpha_{6}} \pm \sqrt{\left(\frac{\alpha_{4}}{3 \alpha_{6}}\right)^{2}-\frac{\alpha_{2}}{3 \alpha_{6}}} \equiv m_{ \pm}^{2}$.
The solutions $m_{ \pm}$only exist when the discriminant $\left(\frac{\alpha_{4}}{3 \alpha_{6}}\right)^{2}-\frac{\alpha_{2}}{3 \alpha_{6}}$ is non-negative (and when $m_{ \pm}^{2} \geq 0$). This first occurs when the discriminant is zero, or when $\alpha_{2}=\frac{\alpha_{4}^{2}}{3 \alpha_{6}}$. For the values defining the above graphs, this would be $\alpha_{2}=0.33$. However these correspond to non-zero local minima and not the 'dips' which appear after $\alpha_{2}=0.25=\frac{\alpha_{4}^{2}}{4 \alpha_{6}}($? $)$.

Phase diagram in $\alpha_{4}-\alpha_{2}$ plane. The red region is when the discriminant is negative, and $\tilde{m}=0$ whereas in the green region $\tilde{m}=m_{ \pm}$. The phase boundary is $\alpha_{2}=\frac{1}{3 \alpha_{6}} \alpha_{4}^{2}$.

The jump in magnetisation between 0 and $m_{ \pm}$happens when $\alpha_{2}=\frac{1}{3 \alpha_{6}} \alpha_{4}^{2} \Longrightarrow m_{ \pm}^{2}=-\frac{\alpha_{2}}{\alpha_{4}}$. Thus the jump is $m_{0}=\sqrt{-\alpha_{2} / \alpha_{4}}$ where $\tilde{m}=0 \rightarrow \tilde{m}= \pm m_{0}$.

Finding the critical exponents for $\alpha_{4}=0(B=0$ for α, β, whereas $B \neq 0$ for $\gamma, \delta)$:

$$
c \sim\left|T-T_{c}\right|^{-\alpha} \quad \tilde{m} \sim\left|T-T_{c}\right|^{\beta} \quad \chi \sim\left|T-T_{c}\right|^{-\gamma} \quad \tilde{m} \sim B^{\frac{1}{\delta}}
$$

We have already found $\tilde{m}^{2}=\sqrt{-\frac{\alpha_{2}}{3 \alpha_{6}}} \Longrightarrow \beta=1 / 4$. Using Mathematica $\alpha=1 / 2$.

$$
\begin{aligned}
& \tilde{\mathrm{m}}\left[T_{-}\right]=\left(\frac{\mathrm{Tc}-\mathrm{T}}{3 \alpha_{6}}\right)^{\frac{1}{4}} ;(* \text { roots } \tilde{\mathrm{m}} *) \\
& \mathrm{F}\left[\beta_{-}\right]=\beta(1 / \beta-\mathrm{Tc}) \tilde{\mathrm{m}}[1 / \beta]^{\wedge} 2+\alpha_{6} \beta \tilde{\mathrm{~m}}[1 / \beta]^{\wedge} 6 ;(* \beta f(\tilde{\mathrm{~m}}(\beta)) *) \\
& \mathrm{T}^{\wedge}(-2) * \mathrm{~F}^{\prime}[\mathbf{1} / \mathrm{T}] / / \text { FullSimplify }\left(* \mathbf{c}=\beta^{2} \frac{\partial^{2}}{\partial \beta^{2}}[\beta f(\tilde{\mathrm{~m}}(\beta))] *\right) \\
& \frac{\mathrm{T} \sqrt{\frac{-T+T \mathrm{~T}}{\alpha_{6}}}}{\sqrt{3}(2 \mathrm{~T}-2 \mathrm{Tc})}
\end{aligned}
$$

Near the critical point, for $B \neq 0, f(m) \approx-B m+\alpha_{6} m^{6} \Longrightarrow \tilde{m} \sim B^{\frac{1}{5}} \Longrightarrow \delta=5$. It looks like $\gamma=1$ as in the notes.

Problem 5

I think this is the same analysis as in the notes (starting page 12) with the added possibility of a phase so that $\tilde{\psi} \sim \tilde{m} e^{i \phi}$ minimises the free energy. Maybe spontaneous symmetry breaking is then related to complex conjugating as well as the usual \mathbb{Z}_{2} symmetry.

Problem 6 (by Luke Hodgkiss)

Low T
Thermal fluctuations negligible

- J>0 so spins align in a ferromagnetic ordering (same dirxn)
i) $g<0 \Rightarrow s_{i}^{z}$ term is negative $s 0$ energy is minimized when most of spin in s^{z} component (ie maximized). This is the ling model type ordering
ii) $g=0 \Rightarrow$ neither phase preferred so both phases coexist
iii) $g>0 \Rightarrow s^{x}-s^{y}$ term is negative 50 energy is minimized when spin lies in x-y plane. This is the plane
rotator

High T
Thermal fluctuations dominate, ordering destroyed

really $2^{\text {nd }}$ order phase transition
fully,
socstian
cent
very ii) $\rightarrow 0 \quad s^{z}=0$ recover plane rotator, $2^{\text {nd }}$ order phase transition
detailed

Problem 7

We are given $\psi(x)=\frac{1}{V} e^{i k x} \psi_{k}=a_{k} e^{2 i k x}$ where I have defined $a_{k}=\frac{A_{k}}{V}$. Thus

$$
\psi^{\prime}(x)=2 i k \psi(x) \quad \psi^{\prime \prime}(x)=-4 k^{2} \psi(x)
$$

which tells us

$$
\begin{aligned}
F & =\int d x\left(\alpha_{2}|\psi(x)|^{2}+\alpha_{4}|\psi(x)|^{4}-\gamma\left|\psi^{\prime}(x)\right|^{2}+\kappa\left|\psi^{\prime \prime}(x)\right|^{2}\right) \\
& =\int d x\left|a_{k}\right|^{2}\left(\alpha_{2}+\alpha_{4}\left|a_{k}\right|^{2}-4 k^{2} \gamma+16 k^{4} \kappa\right)
\end{aligned}
$$

The value of \tilde{k} which minimises F is given by $\left.\frac{\delta F}{\delta k}\right|_{\tilde{k}}=0$. Thus, assuming that a_{k} is a constant and remembering that $k= \pm k_{0} \Longrightarrow \tilde{k}= \pm k_{0}$,

$$
\left.\frac{\delta F}{\delta k}\right|_{\tilde{k}}=-8 \tilde{k} \gamma+64 \tilde{k}^{3} \kappa=0 \Longrightarrow \tilde{k}=0 \text { or } \pm \sqrt{\frac{\gamma}{8 \kappa}} \Longrightarrow k_{0}=0 \text { or } \sqrt{\frac{\gamma}{8 \kappa}}
$$

No idea how to relate α_{2} to the other constants if the (discontinuous?) order parameter is k ? If the order parameter is $\psi(x)$ then you need to do $\frac{\delta \psi \psi *}{\delta \psi}$ etc...?

Problem 8

We have $f(m)=\alpha_{2} m^{2}+\alpha_{2 n} m^{2 n}$ so that the equilibrium magnetisations are

$$
\tilde{m}=0 \text { or } \tilde{m}=\left(\frac{T_{c}-T}{\alpha_{2 n} n}\right)^{\frac{1}{2 n-2}} \Longrightarrow \beta^{*}=\frac{1}{2 n-2}
$$

Here β^{*} denotes the critical exponent while $\beta=1 / T$. Using Mathematica I showed $\alpha=1-2 \beta^{*}$.

$$
\begin{aligned}
& \tilde{m}\left[X_{-}\right]=\left(\frac{T c-x}{\alpha_{2 n} n}\right)^{\frac{1}{2 n-2}} ;(* \text { roots } \tilde{m} *) \\
& \mathbf{F}\left[\beta_{-}\right]=\beta(1 / \beta-T c) \tilde{m}[1 / \beta]^{\wedge} 2+\alpha_{2 n} \beta \tilde{m}[1 / \beta]^{\wedge}(2 n) ;(* \beta f(\tilde{m}(\beta)) *) \\
& T^{\wedge}(-2) * \mathbf{F}^{\prime}[1 / \mathrm{T}] / / \text { Fullsimplify }\left(* C=\beta^{2} \frac{\partial^{2}(\beta f(\tilde{m}(\beta)))}{\partial \beta^{2}} *\right) \\
& \frac{n T\left((T-T c)\left(\frac{-T+T c}{n \alpha_{2 n}}\right)^{\frac{1}{-1+n}}+\left(\left(\frac{-T+T c}{n \alpha_{2 n}}\right)^{\frac{1}{2(-1+n)}}\right)^{2 n} \alpha_{2 n}\right)}{(-1+n)^{2}(T-T c)^{2}} \\
& \frac{n T\left((T-T c)\left(\frac{T T T c}{} \frac{1}{2 n n}\right)^{\frac{1}{n-1}}+a^{2}\left(\frac{T+T c}{a_{2 n} n}\right)^{\frac{n}{n-1}}\right)}{(-1+n)^{2}(T-T c)^{2}} / \cdot T \rightarrow T C-y \& y \rightarrow x \alpha_{2 n} n / / \text { FullSimplify } \\
& \frac{n(T C-y)\left(-y\left(\frac{y}{a_{2 n}}\right)^{-\frac{1}{1+n}}+a 2\left(\frac{y}{a_{2 n}}\right)^{-\frac{n}{1+n}}\right)}{(-1+n)^{2} y^{2}} / \cdot y \rightarrow x \alpha_{2 n} n / / \text { Fullsimplify } \\
& \frac{\mathrm{x}^{-1+\frac{1}{+1+n}}\left(-\mathrm{a} 2+\mathrm{n} \alpha_{2 n}\right)\left(-\mathrm{Tc}+\mathrm{n} \times \alpha_{2 n}\right)}{(-1+\mathrm{n})^{2} n \alpha_{2 n}^{2}}\left(\text { *here } \mathrm{x} \sim(T C-T) \text { so that } \alpha=1-\frac{1}{1-n}=1-2 \beta^{*} *\right)
\end{aligned}
$$

