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Abstract
This document provides a qualitative explanation of critical phenomena involving the Potts model, which
are showcased at https://farrenal.github.io/Potts. We first introduce the two-dimensional square lattice
q−Potts model by relating it to the simpler Ising model with q = 2. We motivate and explain a Metropolis-
Hastings algorithm to find the equilibrium lattice configuration for various temperatures and magnitising
field strengths. Finally, we explain the showcased visuals with this background in mind.
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1 Introduction to Criticality

To understand the idea of criticality in statistical physics, we will first review the Ising model. Armed
with some familiarity with this toy model, we will generalise to the q-state Potts model [1]. This section
follows [2] with some thermodynamic theory from [3].

1.1 The Ising model
Suppose we have a square lattice with N sites sitting in some heat bath with temperature T and external
magnetic field H1. Fixed at each lattice site there is a magnetic dipole, which we view as a spin si, with
values +1 or −1 corresponding to the two possible spin orientations; aligned or anti-aligned with the
magnetic field. For each stationary dipole there is an associated potential energy related to the magnetic
moment in the field, as well as a potential energy due the orientation of neighbouring dipoles. The
Hamiltonian H of such a system has the form

H(s) = −
∑
⟨i,j⟩

Jijsisj −
N∑
j=1

Hjsj , (1.1)

where the first term sums over neighbouring dipole interactions and the second term arises due to the
dipoles’ interaction with the external magnetic field. For simplicity, let us assume that the magnetic field

Fig. 1 The 2D Ising model as a square lattice with two spin states.

is uniform in space such that Hj = H for all j = 1, . . . , N and that the nearest neighbour coupling Jij
is the same between every pair of spins. Now the Hamiltonian is

H(s) = −J
∑
⟨i,j⟩

sisj −H
∑
j

sj . (1.2)

By looking at the Hamiltonian (1.2), which corresponds to the energy of our system, we can make some
distinction between regimes. If J > 0 then, to minimise the energy, neighbouring spins prefer to be
pairwise aligned (ferromagnetism). If J < 0 then neighbouring spins prefer to be anti-aligned (anti-
ferromagnetism). Going forward we will assume J > 0. The effect of the external magnetic field H is to
cause dipoles/spins to preferentially align in its direction. Our Hamiltonian (1.2) assigns a minus sign to
the term, which means that H points in the si = +1 direction (again to minimize H).

1Not to be confused with the magnetic field B. See [4] chapter 6.3.
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We are working in a canonical ensemble, i.e. a heat bath with a conserved number of dipoles. The
canonical partition function Z is given by

Z(T, J,H) =
∑
{si}

e−βH(s) (1.3)

where β = 1/kBT and we sum over all lattice configurations {si}. In statistical thermodynamics, this
partition function arises as a normalisation factor for the probability distribution p(E) for a system to
have energy E in equilibrium with a heat bath of temperature T , where

p(E) =
1

Z
e

E
kBT =⇒ ⟨X⟩ =

∑
E

X(E) p(E) =
1

Z

∑
{si}

X e−βH(s). (1.4)

We discussed how spins tend to preferentially align due to neighbouring interactions or the magnetic
field, but the temperature T of the system also plays an important role. At high temperatures, there are
stronger thermal fluctuations, which randomly reorient the spins. At low temperatures, the effects of J
and H are conversely far more influential. We are thus concerned with the average magnetisation density
m of our spin lattice

m =
1

N

⟨∑
j

sj
⟩ (1.4)

=
1

Nβ

∂ lnZ

∂H
. (1.5)

In a completely disordered state where spins are randomly aligned, we expect there to be no magnetic
character to the lattice, i.e. m = 0. In the opposite case, when nearly all spins are aligned in the same
direction, the net magnetisation of the lattice approaches N (all spins si = +1) or −N (all spins si = −1)
so that the magnetisation density approaches m ± 1. So because it details how ordered the spin lattice
is, m is called the order parameter of our system.

1.1.1 Free energy

According to (1.5), to find m we should know the partition function Z. We rewrite

Z =
∑
m

∑
{si}|m

e−βH(s) =
∑
m

e−βF (m), (1.6)

where we first sum over all configurations {si} with fixed average magnetisation m and then sum over
all possible m. The average magnetisation lies between -1 and +1 and takes discrete values, quantised
in units of 2/N . Therefore in the thermodynamic limit when N ≫ 1, we may approximate the discrete
sum (1.6) as an integral. This integral now implicitly defines a function F (m) called the effective free
energy. F depends on the average magnetisation m, the temperature T , and magnetic field strength H.
This means

Z ≈ N

2

∫ +1

−1
dm e−βF (m). (1.7)

We further define the free energy per unit spin, f(m) = F (m)/N . Now our partition function is given by

Z ≈ N

2

∫ +1

−1
dm e−βNf(m). (1.8)

In the thermodynamic limit N ≫ 1 while βf(m) ∼ 1. We may therefore make use of the saddle point
approximation and evaluate the integral as the largest value of its integrand. The condition for steepest
descent is

∂f

∂m
(meq) = 0. (1.9)
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where meq is the equilibrium value of the magnetisation, such that f is minimised. All in all, we have
approximated our partition function to be

Z ≈ e−βNf(meq). (1.10)

From thermodynamics we know that the Helmholtz free energy is given by FH = − lnZ/β from which
we see that the Helmholtz free energy can be viewed as the effective free energy evaluated at the saddle
point in the thermodynamic limit, i.e. FH ≈ F (meq). This implies

m
(1.5)
=

1

Nβ

∂ lnZ

∂H
= − 1

N

∂FH
∂H

. (1.11)

1.1.2 Mean field theory

We can get an estimate for the Hamiltonian of a lattice configuration by replacing each site’s spin si with
its mean value ⟨si⟩ = m. We get

H ≈ ⟨H⟩ = −J
∑
⟨i,j⟩

m2 −H
∑
j

m =⇒ ⟨H⟩
N

≈ −1

2
JQm2 −Hm, (1.12)

where Q is the number of nearest neighbours per site2. This is a rather coarse approximation as it does
not contain any dynamical information about the lattice. There is however the benefit of making the
previous summations easier. All we need now do is count the number of configurations with magnetisation
m to calculate

Z ≈
∑
m

∑
{si}|m

e−β⟨H⟩ =
∑
m

e−β⟨H⟩
∑

{si}|m

1. (1.13)

A system with magnetisation m with N↑ spins oriented up and N↓ oriented down has magnetisation

m =
N↑ −N↓

N
=

2N↑ −N

N
. (1.14)

In statistical physics, a microstate is a specific configuration of the system realising energy E, volume V
with N constituents in a microcanonical ensemble [3]. The number of microstates Ω(E, V,N) counts the
total number of possible system configurations with such thermodynamic properties. For us, the number
of microstates Ω(m) with magnetisation m is

Ω(m) =
N !

N↑!(N −N↑)!
=

(
N

N↑

)
. (1.15)

This is because there are
(
N
N↑

)
ways to choose N↑ sites from N to which we assign s = +1 while achieving

a magnetisation m. (The rest must have s = −1.) In the thermodynamic limit, where N ≫ 1, we can
use Stirling’s approximation3 and some algebra to get

lnΩ(m)

N
≈ ln 2− 1

2
(1 +m) ln (1 +m)− 1

2
(1−m) ln (1−m). (1.16)

2In d = 1 dimension, a square lattice has 2 nearest neighbours. In d = 2 dimensions, a square lattice has 4 nearest
neighbours. In general, it’s easy to see that a square lattice in d dimensions has Q = 2d nearest neighbours. We must
however divide Q by two in (1.12) to prevent double counting the same nearest neighbour pair.

3lnA! ≈ A lnA−A for very large A ≫ 1.
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According to (1.6), we have defined f(m) such that

eβNf(m) =
∑

{si}|m

e−βH ≈ e−β⟨H⟩
∑

{si}|m

1 = Ω(m)e−β⟨H⟩. (1.17)

Taking the natural log of both sides and substituting (1.16), we get the mean field free energy per site

f(m) ≈ −Hm− 1

2
JQm2 − kBT

[
ln 2− 1

2
(1 +m) ln (1 +m)− 1

2
(1−m) ln (1−m)

]
(1.18)

Now we compute the mean field equilibrium magnetisation meq which satisfies (1.9), yielding

β(H + JQmeq) =
1

2
log

(
1 +meq
1−meq

)
. (1.19)

Rearranging gives us the self-consistency equation for the equilibrium magnetisation meq,

meq = tanh(βH + βJQmeq). (1.20)

We can interpret the argument of the hyperbolic tangent as an effective field Heff = H + JQmeq which
also encapsulates the neighbouring spin interactions’ effect on each site. This Heff is sometimes called
the mean field, whence the name of this approximation.

1

−1

tanhβ(H + JQm)

m

m

Fig. 2 The self-consistency equation for meq is represented by the intersection of
the two curves. We see that meq = 0 is only a solution if H = 0 and
T ≫ J .

1.2 Phase transitions in the Ising model
In thermodynamics, a phase transition occurs when a certain quantity, the order parameter, changes
discontinuously. By first order phase transitions, we then mean those characterised by a discontinuity in
the first derivatives of FH or the Gibbs free energy. We can extend this definition to second order phase
transitions where the order parameter is a second derivative of the free energies and so on.
These derivatives are important because they detail the stability of a thermodynamic system. In partic-
ular, if the stability or equilibrium criteria are violated, by a discontinuity of a derivative, then we arrive
at an unstable phase of matter which prompts a phase transition.
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As we saw in (1.5), the order parameter for the Ising model is the average or equilibrium magnetisation
m which is a first derivative of FH as seen in (1.11). If instead of finding the equilibrium magnetisation
meq for all regimes of m, we Taylor expand the free energy (1.18) around small m (which corresponds to
a disordered state) we get the Landau mean field free energy

f(m) ≈ −kBT ln 2−Hm+
1

2
(kBT − JQ)m2 +

1

12
kBTm

4 + ... . (1.21)

The derivative of this approximation ∂f/∂m exhibits different behaviour in different regimes of J, T and
H. We will consider now the critical behaviour of the Ising model in both the absence and presence of a
magnetic field.

1.2.1 With H = 0

Consider the mean field free energy f(m) where there is no external magnetic field such that H = 0.
From (1.21) we get

f(m) ∝ 1

2
(T − Tc)m

2 +
1

12
Tm4 + . . . , (1.22)

where we have defined the critical temperature Tc = JQ/kB = 2dJ/kB in d dimensions and ignored the
overall constant term −kBT ln 2. The free energy minimum depends on the sign of the coefficient of the
quadratic term as seen below.

m

f(m)

Fig. 3 Free energy f(m) for T > Tc

m

f(m)

Fig. 4 Free energy f(m) for T < Tc

Computing f ′(meq) gives us, truncating from O(m6),

(T − Tc)meq +
1

3
Tm3

eq = 0 =⇒ meq
(
m2

eq − 3(Tc − T )

T

)
= 0. (1.23)

We see from Fig. 3 that when T > Tc the minimum corresponds to meq = 0, while for T < Tc Fig. 4 tells
us that meq = ±

√
3(T − Tc)/T . But this Landau mean field expression for f(m) is only valid for small

m, which happens around T ≈ Tc according to what we just discussed. (The equilibrium meq is most
likely to be measured on the lattice, so we can talk about it ‘happening’.)
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When m is not small enough to truncate at order O(m6), i.e. when T is not close enough to Tc we need
to look at our self-consistency equation (1.20) again

meq = tanh(βHeff), Heff = kBTcmeq. (1.24)

For T ≈ 0, βHeff → ±∞ so we see from Fig. 2 that tanhβHeff → ±1 for all meq depending on the sign
of Heff. This means meq = ±1. We can visualise this on the following sketch of a phase diagram.

-1

+1

Tc

T

meq

Fig. 5 Phase diagram for the Ising model with
order parameter being the equilibrium
magnetisation meq of the lattice.

At low temperatures, far below Tc, the equilibrium
magnetisation takes values ±1 as the alignment
effect of the magnetic field overwhelms the random
alignment caused by thermal fluctuations. At high
temperatures, above Tc, the opposite happens
and spins tend to be randomly aligned overall,
which results in a vanishing magnetisation. Mean-
while, at Tc the magnetisation switches on or off
abruptly. Since m is smooth, this is a continuous
(so second order) phase transition of the spin
lattice from a disordered state m = 0 when T > Tc

to an ordered state m → ±1 when T < Tc.

There is however an ambiguity in the latter
case when the lattice has to ‘decide’ between spin
orientations. meq is determined by the sign of Heff
which is circularly determined by itself.

1.2.2 With H ̸= 0

Just like with H = 0, the minimum of f(m) in (1.21) will depend on whether T is above or below Tc.
However this time, when T < Tc, such that the quadratic term is negative and creates those two dips,
one dip will be lowered by the linear term −Hm.

m

f(m)

Fig. 6 T < Tc and H < 0,

m

f(m)

T < Tc and H = 0,

m

f(m)

T < Tc and H > 0.
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Looking at (1.23), time at high temperatures the magnetisation smoothly asymptotes to 0 as m → H/T .
At low temperatures, the magnetisation asymptotes smoothly to ±1, where there is no ambiguity this
time. For H ̸= 0, there is no phase transition as a function of T . However, if we kept T fixed with T < Tc,
then looking at Fig. 6, there is a discontinuous first order phase transition as m switches from -1 to 0 to
+1 as we increase the magnetic field from a negative value.

1.2.3 Critical temperature

We have seen how the phase behaviour of the Ising model depends on T, H and Tc ∝ J/kB. However,
our expression Tc = 2dJ/kB taken from the Landau mean field approximation (1.21) does not agree
with the exact result (1.25) for d = 2 and H = 0, which is found using Kramers–Wannier duality [5, 6].
This duality exploits an elegant symmetry in statistical physics which relates the partition function of

Fig. 7 A square lattice is self-dual, which is used in Kramers–Wannier duality.

a low temperature to a high temperature Ising model. In turns out that, for a square lattice where the
nearest-neighbour interaction is isotropic (horizontal and vertical interactions are equivalent), we have

Tc =
2

ln
(
1 +

√
2
) J

kB
≈ 2.269

J

kB
. (1.25)

To learn how this number pops out of a polygon-counting problem, watch this video that A. Farren and
M. Whelan created on the subject, or alternatively read [5] from which our presentation followed.

1.3 The Potts model
The q-Potts model generalises the Ising model to higher spin systems. Beyond the ability of the Potts
model to emulate spin systems it is equally useful in modelling lattice gases, binary (tertiary and beyond)
alloys and superconductors [5, 6]. The model’s critical behaviour (and numerical accessibility) is what
motivated us to undertake this project.
We first replace the sisj term in the Ising model Hamiltonian (1.1) with δ(si, sj) = (1+sisj)/2 and ignore
the constant term which does not play a role as it does not contribute to the Hamiltonian’s variational
behaviour. In doing so we obtain the Potts model Hamiltonian

H(s) = −2J
∑
⟨i,j⟩

δ(si, sj)−H ·
∑
j

sj , (1.26)

where sites have spin orientations si which now take discrete values 0, 1, . . . , q−1. The meaning of H ·sj
in the Hamiltonian (1.26) is that only the spins parallel to H contribute.

– 9 –
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Fig. 8 The 2D q-Potts model as a square lattice with q spin states.

There are various shapes of lattices and conventions for how to define ‘spin orientation’. For the purposes
of this project we will stick with the standard two-dimensional square lattice existing in q−1 dimensional
space so that the spins are all orthogonal [7]. This means that only one spin direction is parallel to the
magnetic field H. As in the Ising model, it is also possible to consider multi-site interactions, or beyond-
nearest-neighbour interactions which we will forego to keep it easy-peasy. The definition of magnetisation
is not so obvious anymore as we would need to specify how to ‘add’ spins and find an analog to the net
alignment to the magnetising field.
For a discussion of the Potts model with various definitions, see the seminal review by Wu [7].
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2 Numerical Simulation of the Potts Model

Our objective is to numerically display how the equilibrium configuration of the Potts model lattice
depends q, T and H values. We will see how to implement a Metropolis-Hastings algorithm, which is a
Markov chain Monte Carlo method, to reflect the physical factors influencing the evolution of a lattice
site (e.g. thermal fluctuations, magnetic field alignment). This section will take from [6, Ch. 7].

2.1 Metropolis Hastings algorithm

2.1.1 Initialisation

We start by randomly initialising a width×height lattice with site spins state[i][j] taking values
0, 1, . . . , q − 1 where i≤width and j≤height. This is the current configuration which is stored in a
two-dimensional array state.
import numpy as np
import random

### initialise lattice with width and height for some q value
state = np.zeros((width, height))
state=[[random.randint(0,q-1) for i in range(width)] for i in range(height)]
state=np.array(state)

Listing 1 A snippet of the code found at here.

2.1.2 Random flip

Once the lattice is initialised, a lattice site (m,n) with spin s(m,n) =state[m][n] is randomly selected,
where m ∈ {1, . . . , width} and n ∈ {1, . . . , height}. Its four nearest neighbours

N = {(m− 1, n), (m+ 1, n), (m,n− 1), (m,n+ 1)} (2.1)

and their spin values are identified by looking left, right, above and below the (m,n) site all the while
imposing boundary conditions. This explicitly means s(a, b) = s(a+width, b) = s(a, b+height). Once
this site and its neighbours are identified, we suggest a random flip of the (m,n) site’s spin, i.e.

s(m,n)
?−→ s̃

where s̃ is randomly chosen from {0, 1, . . . , q − 1}. Accepting this flip defines the proposed configuration.
### Pick random lattice site

m=random.randint(0, height -1) # row
n=random.randint(0, width -1) # column

next=random.randint(0,q-1) # suggested flip
current=state[m][n] # store current state

### Identify neighbours of (m,n)
left = state[m][(n - 1 + width) % width]
right = state[m][(n + 1) % width]
top = state[(m - 1 + height) % height][n]
bottom = state[(m + 1) % height][n]

Listing 2 Suggested change of randomly selected site and identifying neighbours.

– 11 –
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The associated change in energy comes only from terms in (1.26) which involve the site (m,n), i.e.

∆E = Hproposed −Hcurrent = −2J
∑
i∈N

δ(si, s̃)−H · s̃+ 2J
∑
i∈N

δ(si, s(m,n)) +H · s(m,n)

= 2J
∑
i∈N

(
δ(si, s(m,n))− δ(si, s̃)

)
+H ·

(
s(m,n)− s̃

)
. (2.2)

where we sum over the four nearest neighbours and only account for magnetising field contributions where
the spin is aligned with the direction of H. (Unlike the Ising model, the spins are not either aligned or
anti-aligned as assumed in (1.1) which has H · sj = ±H)

### Computing change of energy associated with suggested spin flip
# summing over horizontal and vertical neighbours' contributions
dleft = (left==current)-1*(left==next)
dright = (right==current)-1*(right==next)
dtop = (top==current)-1*(top==next)
dbottom = (bottom==current)-1*(bottom==next)
dE=2*J*(dleft+dright+dtop+dbottom)+H*((Hdirection==current)-1*(Hdirection==next))

Listing 3 Code implementation of (2.2) with current representing s(m,n) and
next representing s̃. Boolean logic is used for Kronecker deltas.

If this resulting spin flip is energetically favourable, with ∆E < 0 such that it decreases the energy, then
the flip is accepted immediately and we redefine s(m,n) = s̃. If ∆E > 0, then we give the change a second
chance which is more or less forgiving depending on the relative likelihood of the new configuration. In
particular, we look at the ratio of probability distributions (1.4) between the current spin lattice and the
proposed one

pcurrent
pproposed

=
e−βHcurrent/Z

e−βHproposed/Z
= e−β∆E = e−∆E/kBT , (2.3)

which necessarily lies between 0 and 1 for ∆E > 0. A uniformly random number r ∈ [0, 1) is chosen to
compare with exp(−∆E/kBT ). We finally then impose the following condition; if r < exp(−∆E/kBT ),
then we accept the proposed configuration and s(m.n) = s̃, otherwise we dismiss the change. To see that
this makes sense, let us think about how the exponent behaves for different regimes.

• Low temperatures kBT ≪ ∆E The spin lattice is rigid with respect to thermal fluctuations.
We expect neighbouring spin sites to lock each other in aligned orientations for J > 0. This also
agrees with the change condition since the exponent tends to 0 and no random spin changes are
allowed unless energetically favourable, i.e. ∆E < 0, which corresponds to aligned neighbours.

• High temperatures kBT ≫ ∆E Thermal fluctuations are now stronger and random spin flips
are more frequent, the exponent tends to 1. It then makes sense that the random change tends to
be always accepted since r < 1.

### Conditional acceptance of suggested flip
dE*=1/(2*J) # to work with T in right units
if dE<=0: state[m][n] = next # immediately accept change if favourable
else:

r=np.random.uniform() # generate random number
if dE>0 and r < np.exp(-dE/T): # where T in units of J/kB

state[m][n] = next

Listing 4 To work with temperature in natural units of J/kB, we normalise the
energy change before proceeding with checking the acceptance
conditions for the Metropolis-Hastings algorithm described above.
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2.1.3 Rinse and repeat

After initialising the lattice and performing a step (considering a random flip), we start with whatever
configuration is leftover, whether or not we ended up accepting the change. This configuration becomes
the current configuration and we perform another random flip as outlined above.
After enough proposed changes are considered and either accepted or rejected, the overall properties of
the lattice will stop changing. This is because no configuration is more energetically favourable and thus
more likely. This is the definition of thermodynamic equilibrium, which has thus been achieved. We
can now relate our analysis of section 1 to a suitably chosen output of this iterated Metropolis-Hastings
algorithm. (To us a suitably chosen final lattice does not show any sign of changing over a few hundred
random flips, which usually occurs after ∼ 105 steps for our code.)

t = 0 steps

t = 4× 104 steps

t = 2× 105 steps

t = 4× 105 steps

Fig. 9 Time evolution of a q = 3 lattice in the absence of H with T = 2J/kB.
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3 Explanation of the Visuals

In this section we use what we learned to explain the behaviour of the visuals shown here. The lattice
is initialised to a random configuration and then evolved over ‘time’, which is the number of iterations
of the Metropolis-Hastings algorithm (see Fig. 9). Eventually, different thermodynamic equilibria are
reached for different q, T and H values. Let’s explore how each of these variables affect the evolution of
the Potts model4.

3.1 Choosing q

The q-Potts model has sites which can take q values. For us these values will be represented by colours
instead of arrows as in Fig. 8, where sites’ spin orientation can take values 0, 1, . . . , q − 1. Specifying
q then amounts to choosing how many different colours a site of the square lattice can be in. Of course,
q = 2 corresponds to the Ising model. The colour scheme we employ is below.

s = 0 s = 1 s = 2 s = 3 s = 4

3.2 Choosing T

The spin lattice is in a heat bath at temperature T , which induces more or less thermal fluctuations
depending on how T compares to the spin coupling J . At low temperatures, the lattice displays config-
urations with domains which are regions in which all sites have the same colour (or spin orientation).
The size and uniformity of these domains is determined by the neighbouring spin interaction and the
temperature.

• Low temperatures
The spin lattice is stable with respect to thermal fluctuations. For energy
to be minimised, neighbouring spins tend to lock each other in aligned
orientations which favours the creation of domains.

• High temperatures
Thermal fluctuations are stronger and random spin flips are more fre-
quent. Domains are never created as regions with uniform spin orienta-
tion are now susceptible to being broken by thermal behaviour.

Between the two extremes of low and high temperatures, there is a critical point around which features
of both regimes are present. Just below the critical temperature, we expect to see remnants of domains
while just above we expect to see far fewer. We can view this as the phase transition described in section
1.2 generalised to the Potts model.

4In the final code, we actually incorporated nearest-nearest-neighbour interaction to achieve rounder domains. This does
not affect the subsequent discussion and makes the visuals much prettier.
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3.3 Choosing H

Our lattice is also in a magnetic field with strength H and direction parallel to the s = 0 direction.

• H = 0
If there is no magnetic field, then only the above considerations of tem-
perature are relevant in explaining the evolution of the lattice over time.

• H ̸= 0
As the magnetic field strength is dialed up, the spin orientation which
is parallel to the direction of the field (here s = 0) is more energet-
ically favoured. For any temperature the s = 0 orientation will be
more abundant than others. And, for strong H, even the randomness of
high-temperature thermal fluctuations is subdued and replaced with an
ordered configuration.

For each q value chosen, the critical temperature and what it means for a magnetic field to be ‘strong’
varies. Seeking to show only the qualitative dependence of the phase behaviour of the q-Potts model on
T and H, we played around with the numerical values and took note of what temperatures seemed to be
critical and what magnetic fields seemed to be strong. Here are those numerical values.

q T values in J/kB H values in spin moments
2 0.5, 2.0, 2.5, 5.0 0, 1, 5, 10
3 0.5, 1.5, 2.0, 4.0 0, 3, 8, 15
4 0.5, 1.5, 2.0, 3.5 0, 5, 10, 25
5 0.5, 1.5, 2.0, 3.0 0, 5, 15, 35

The dynamical GIFs were generated using matplotlib.animation for the user to select on the page.
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