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Motivation
Theoretical corrections to experimentally measurable quantities involve Feynman
diagrams with loops which correspond to virtual particles in quantum field theory
[1]. These loop diagrams thus form a central focus of modern particle physics
but are associated with Feynman integrals which are difficult, or in some cases
presently impossible, to compute [2]. Departing from physics for a moment, a clear
understanding of these diagrams’ analytical and algebraic nature should provide
us with useful insights into bypassing sometimes intractable calculations.

Particle physics ←− Theoretical corrections ←− Feynman integrals

Given a Feynman diagram, there exists a map called the symbol [3] which produces,
for example,
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[ ]
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(
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)
ϵ2 + . . . .

We refer to these strings of tensor products as words which have letters being
functions of kinematic variables (here the mass and momentum). The output
of the symbol is useful because it reveals the analytic structure of the Feynman
integral without needing to compute the latter explicitly. The goal of this project
was to explain the symbol alphabet (and dictionary) of various one-loop Feynman
diagrams by answering the questions:

• What letters are possible? In what entry?
• Given this alphabet, what words appear?

Feynman integrals
One-loop integrals

All one-loop Feynman integrals can be expressed in terms of scalar n-point integrals
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where the external momenta satisfy
∑

i pi = 0 and qi are chosen such that mo-
mentum is conserved at each vertex. In dimensional regularisation with complex
variable ϵ, if Dn ≡ 2⌈n

2
⌉ − 2ϵ the basis of master integrals becomes J̃n = IDn

n [1].

Tadpole Bubble Triangle Box

All one-loop Feynman integrals are expressible as multiple polylogarithms (MPLs)
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In particular, the integrals J̃n are expressible in terms of pure MPLs with uniform
weight at each order in ϵ if we normalise them by their maximal cut: Jn ≡ J̃n/jn.
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Cut integrals

The simplest version of a cut integral CC J̃n consists of choosing a subset C of
propagators and, in the integrand of J̃n, putting each propagator on-shell via a
Dirac delta function. A more general definition of one-loop cut integrals CC J̃n [4]
involves the Gram determinant and the modified Cayley determinant

GramC = det((qi − q∗) · (qj − q∗))i,j∈C\∗,

YC = det(m2
i +m2

j − (qi − qj)
2)i,j∈C2−n.

For example, in the case when no determinant vanishes C[n]J̃n ∼ jn
(

Y[n]

Gram[n]

)−ϵ
,

where the maximal cut in integer dimensions is

jn ≡ lim
ϵ→0
C[n]J̃n =
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2(1−n)/2i(n−1)/2 Gram

−1/2
[n] n odd,

21−n/2in/2Y
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[n] n even.

The symbol map
Coaction on MPLs

With A the vector space of MPLs, and H = A/(iπA), the Hopf algebra of MPLs
leads to a coproduct ∆MPL : A → A⊗H. Acting on the classic polylogarithm,

∆MPL(Lik(z)) = 1⊗ Lik(z) +
k−1∑
n=0

1

n!
Lik−n(z)⊗ logn(z).

Symbols

For an iterated integral expressed in dlog-forms [5], the symbol returns

I =

∫ b

a

d logR1 ◦ · · · ◦ d logRk −→ S[I] = R1 ⊗ · · · ⊗Rk

and up to constants is equivalent to the maximally iterated coaction. Since 1-loop
diagrams are expressed as MPLs of uniform weight (for a given ϵ order), we can
meaningfully apply the symbol. For instance, S[Li3(z)] = −(1− z)⊗ z⊗ z whence
{z, 1− z} are letters.

Using the recursion
We computed the symbol alphabet in full using the symbol recursion formula [3]
and data of all the relevant cuts for select diagrams. For each diagram or cut,
we used the analytic solution to take an expansion in ϵ. The symbol has words
with length corresponding to the order in ϵ of the term. For example, the symbol
recursion for the box is
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The two-mass easy box is the box diagram where p21, p
2
3 ̸= 0 and has the alphabet

{
p21, p

2
3, s, t,

p21 − s, p21 − t, p23 − s, p23 − t,

st− p21p
2
3, s+ t− p21 − p23

}

From the recursion, we determine a set of rules dictating which set of letters can
sequentially occur after another set of letters. A valid word might look like

s⊗ s⊗ · · · ⊗ s ⊗ (p21 − s) ⊗ (st− p21p
2
3)⊗ · · · ⊗ (s+ t− p21 − p23).

We found that the letter (s+ t− p21− p23) cancels at the first steps of the recursion
such that it only appears from the third entry onwards. This type of cancellation
is not immediately obvious from the recursion but should be explainable when
looking at the formula in terms of determinants.

Conclusion
We successfully determined the symbol alphabet for some non-generic cases.

Diagram Alphabet Dictionary

Ë Ë Ë Ë Ë Ë

Ë Ë 3

3 3

Ë Ë Ë

Ë Ë

Ë Ë 3 Ë Ë 3

Constraints on letters seem to come from relations between determinants specific
to the diagram, which ultimately detail the geometry of polytopes associated with
the kinematics. Linear relations [3, 4] between cut integrals may also provide an
avenue to study the implications of this geometry regarding the occurrence of
symbol letters. Interestingly, our method relied on cuts C[n], C[n−1], C[n−2] whereas
[6] claims to exhaust the symbol alphabet with cuts of two propagators C{i,j}.
Reconciling this, and exploring cuts at orders ϵ0,1 in terms of determinants, should
provide a clearer perspective of symbol alphabets for one-loop Feynman integrals.


