Trinity College Dublin Quantising the $\mathrm{AdS}_{5} \times S^{5}$ Superstring
Colâiste na Trionóide, Baile Âtha Cliath The University of Dublin

Alexander Farren supervised by Sergey Frolov

Why $\operatorname{AdS}_{5} \times S^{5}$?

A central effort of modern theoretical physics is quantum gravity, a field of study dedicated to reconciling the quantum framework of particle physics with the classical picture of general relativity. Since its formulation in the 1960 's, string theory has provided many rich insights into how these two are related. In particular, in 1997, Juan Maldacena put forward what is now known as the AdS/CFT correspondence:

Anti-de Sitter spacetime $\leftrightarrow \quad$ Conformal field theory
 Type IIB AdS 5 superstring
 $\mathcal{N}=4$ Super Yang-Mills

One needs the full spectrum of operators of the quantised string in the AdS spacetime to use this duality. This project is a review of [1] by Gleb Arutyunov and Sergey Frolov, which presents a procedure for quantising the $\operatorname{AdS}_{5} \times S^{5}$ superstring by reducing the problem to finding the spectrum of scattering states in a 2D quantum field theory.

Bosonic string theory

The basic idea is to generalise a relativistic point particle to a one-dimensional string which lives in $D=26$ spacetime. The modes of vibration can be identified as bosons.

Worldline of particle and worldsheet of a closed string.
Now parameterise spacetime coordinates $X^{M}(\boldsymbol{\sigma})$ by $\boldsymbol{\sigma}=(\tau, \sigma)$, where $M=1, \ldots, 26$. Spacetime geometry is desribed by $G_{M N}$ and the worldsheet by $\gamma_{\alpha \beta}$ for $\alpha \in\{\tau, \sigma\}$. For closed strings, worldsheet parameterised by $\tau \in \mathbb{R}$ and $-\pi r<\sigma<\pi r$. Minimising the worldsheet area gives Polyakov action for bosonic strings [2]

$$
S=\iint d \tau d \sigma \mathscr{L}=-\frac{T}{2} \iint d \tau d \sigma \gamma^{\alpha \beta} \partial_{\alpha} X^{M} \partial_{\beta} X^{N} G_{M N}
$$

Solving equations of motion $\delta S / \delta \gamma_{\alpha \beta}=0$ yields Virasoro constraints

$$
C_{1}=p_{M} X^{\prime M}=0, \quad C_{2}=p_{M} p^{M}+T^{2} X_{M}^{\prime} X^{\prime M}=0
$$

Solving $C_{1}=C_{2}=0$, can rewrite Polyakov action in first-order form as

$$
S=\iint d \tau d \sigma\left(p_{M} \dot{X}^{M}+\frac{\gamma^{\tau \sigma}}{\gamma^{\tau \tau}} C_{1}+\frac{1}{2 T \gamma^{\tau \tau}} C_{2}\right)=\iint d \tau d \sigma p_{M} \dot{X}^{M}
$$

Suppose we could change to light cone coordinates where $p_{M} \dot{X}^{M}=p_{\mu} \dot{x}^{\mu}+p_{-} \dot{x}_{+}+p_{+} \dot{x}_{-}$ and x^{μ} are the physical coordinates. In light cone gauge, where $x_{+}=\tau$ and $p_{+}=1$ we see that the Hamiltonian density of a classical bosonic string in light cone gauge is $\mathcal{H}=-p_{-}\left(p_{\mu}, x^{\mu}, x^{\prime \mu}\right)$. We want to answer: What is p_{-}for a superstring?

Superstring theory

This time $D=10$ and the bosonic/fermionic paradigm is encoded in a superalgebra structure [3]. A \mathbb{Z}_{2}-graded Lie algebra $\mathscr{G}=\mathscr{G}^{(\mathbf{0})} \oplus \mathscr{G}^{(\mathbf{1})}$ is equipped with the Lie bracket

$$
[\mathfrak{a}, \mathfrak{b}]=-(-1)^{|\mathfrak{a}||\mathfrak{b}|}[\mathfrak{b}, \mathfrak{a}], \quad\left[\mathscr{G}^{(\mathbf{a})}, \mathscr{G}^{(\mathbf{b})}\right] \subseteq \mathscr{G}^{(\mathbf{a}+\mathbf{b})}
$$

If $M \in \mathscr{G} \equiv \mathfrak{s u}(2,2 \mid 4)$, then $M H+H M^{\dagger}=0$ and $\operatorname{str}(M)=0$ where

$$
M=\left(\begin{array}{cc}
\quad \text { even } & \text { odd } \\
\eta & \theta \\
\eta & \theta \\
n
\end{array}\right), \quad H=\left(\begin{array}{cc}
\gamma^{5} & 0 \\
0 & \mathbb{1}_{4}
\end{array}\right)
$$

Refine to \mathbb{Z}_{4}-grading with decomposition $\mathscr{G}=\mathscr{G}^{(0)} \oplus \mathscr{G}^{(1)} \oplus \mathscr{G}^{(2)} \oplus \mathscr{G}^{(3)}$. In this case, parameterise $\mathrm{AdS}_{5}=\left\{t, z^{i}\right\}$ and $S^{5}=\left\{\phi, y^{i}\right\}$ for $i=1, \ldots, 4$. Again we can collect $X^{M} \in$ $\left\{t, \phi, x^{\mu}\right\}$ where x^{μ} are the transversal degrees of freedom for $\mu=1, \ldots, 8$. Define the $\mathfrak{s u}(2,2 \mid 4)$ one-form current which embeds $\mathrm{AdS}_{5} \times S^{5} \subset S U(2,2 \mid 4) /(S O(4,1) \times S O(5))$

$$
A_{\alpha}=-\mathfrak{g}^{-1} \partial_{\alpha} \mathfrak{g} \in \mathscr{G}, \quad \mathfrak{g}=\Lambda(t, \phi) \mathfrak{g}_{\mathfrak{b}}\left(x^{\mu}\right) \mathfrak{g}_{\mathfrak{f}}(\chi) \in \exp \mathscr{G} .
$$

Putting all these ingredients together, we can finally understand the relevant action.

$$
S=-\frac{T}{2} \int d^{2} \sigma\left[\gamma^{\alpha \beta} \operatorname{str}\left(A_{\alpha}^{(2)} A_{\beta}^{(2)}\right)+\kappa \varepsilon^{\alpha \beta} \operatorname{str}\left(A_{\alpha}^{(1)} A_{\beta}^{(3)}\right)\right]
$$

Green-Schwarz action for the $\mathrm{AdS}_{5} \times S^{5}$ superstring

References

Arutyunov, Frolov. Foundations of the $A d S_{5} \times S^{5}$ Superstring. Part I. 2009 Green, Schwarz, Witten. Superstring Theory: Volume 1, Introduction. 1988.
[3] Kac. Lie superalgebras. 1977.
[4] Frolov, Plefka, Zamaklar. The $A d S_{5} \times S^{5}$ superstring in light-cone gauge and its Bethe

Quantising the superstring

	κ-symmetry gauge (s)	Light cone gauge (s, b)
Freedom	$\mathfrak{g} \rightarrow \mathfrak{g e} e^{\epsilon(\tau, \sigma)}$ provided $\kappa= \pm 1$	$(\tau, \sigma) \rightarrow(\tilde{\tau}, \tilde{\sigma})$
Fixing	$\chi \longrightarrow\left(\begin{array}{cc\|cc}0 & 0 & 0 & a \\ 0 & 0 & b & 0 \\ \hline 0 & b^{\dagger} & 0 & 0 \\ -a^{\dagger} & 0 & 0 & 0\end{array}\right)$	$\begin{gathered} x_{+}=\frac{1}{2}(\phi+t) \rightarrow \tau, \\ p_{+}=\frac{1}{2}\left(p_{\phi}-p_{t}\right) \rightarrow 1 . \end{gathered}$

The resulting gauge-fixed Lagrangian gives us a classical Hamiltonian which is still too complicated/non-linear [4]. We resort to rescaling $\sigma \rightarrow \sigma T$ such that the worldsheet circumference becomes $2 \pi r T$ while we inversely rescale $\left(x^{\mu}, p_{\mu}, \chi\right) \rightarrow\left(x^{\mu}, p_{\mu}, \chi\right) / \sqrt{T}$. The radius r is taken to infinity, and we consider the large tension limit $T \gg 1$.

The part of Lagrangian quadratic in the physical fields $\left(x^{\mu}, p_{\mu}, \chi\right)$ is

$$
\mathscr{L}_{2}=p_{\mu} \dot{x}^{\mu}-\frac{i}{2} \operatorname{str}\left(\Sigma_{+} \chi \dot{\chi}\right)-\mathcal{H}_{2},
$$

where we define the quadratic Hamiltonian in terms of two-index fields

$$
\begin{aligned}
\mathcal{H}_{2}= & \frac{1}{4} P_{a \dot{a}} P^{a \dot{a}}+Y_{a \dot{a}} Y^{a \dot{a}}+Y_{a \dot{a}}^{\prime} Y^{\prime a \dot{a}}+\frac{1}{4} P_{\alpha \dot{\alpha}} P^{\alpha \dot{\alpha}}+Z_{\alpha \dot{\alpha}} Z^{\alpha \dot{\alpha}}+Z_{\alpha \dot{\alpha}}^{\prime} Z^{\prime \alpha \dot{\alpha}} \\
& +\underbrace{\eta_{\alpha \dot{a}}^{\dagger} \eta^{\alpha \dot{a}}+\frac{\kappa}{2} \eta_{\alpha \dot{a}}^{\prime} \eta^{\alpha \dot{a}}-\frac{\kappa}{2} \eta_{\alpha \dot{a}}^{\prime \dagger} \eta^{\dagger \dot{a}}+\theta_{a \dot{\alpha}}^{\dagger} \theta^{a \dot{\alpha}}+\frac{\kappa}{2} \theta_{a \dot{\alpha}}^{\prime} \theta^{a \dot{\alpha}}-\frac{\kappa}{2} \theta_{a \dot{\alpha}}^{\prime \dagger} \theta^{\dagger a \dot{\alpha}}} .
\end{aligned}
$$

These indices correspond to the linear transformation rules of $\mathfrak{g} \rightarrow \stackrel{8}{G} \cdot \underset{G}{\text { Fermions }}$ where
$G \cdot \mathfrak{g}=\Lambda \cdot G \mathfrak{g}_{\mathfrak{b}} G^{-1} \cdot G \mathfrak{g}_{\mathfrak{f}} G^{-1} \cdot G, \quad G=\operatorname{diag}\left(S U(2)_{\alpha}, S U(2)_{\dot{\alpha}}, S U(2)_{a}, S U(2)_{\dot{\alpha}}\right)$
where $a=1,2, \dot{a}=\dot{1}, \dot{2}$ are even while $\alpha=3,4, \dot{\alpha}=\dot{3}, \dot{4}$ are odd, i.e. $|a|=|\dot{a}|=0$ while $|\alpha|=|\dot{\alpha}|=1$. We can now promote fields to operators, i.e. quantisation:

$$
\begin{aligned}
& Y^{a \dot{a}}(\tau, \sigma)=\int_{\mathbb{R}} \frac{d p}{2 \pi} \frac{1}{\sqrt{2 E_{p}}}\left(a^{a \dot{a}}(p) e^{\mathrm{i} \sigma p}+\varepsilon^{a b} \varepsilon^{\dot{a} \dot{b}} a_{b \dot{b}}^{\dagger}(p) e^{-\mathrm{i} \sigma p}\right), \\
& \theta^{a \dot{\alpha}}(\tau, \sigma)=\int_{\mathbb{R}} \frac{d p}{2 \pi} \frac{1}{\sqrt{2 E_{p}}}\left(f(p) a^{a \dot{\alpha}}(p) e^{\mathrm{i} \sigma p}+h(p) \varepsilon^{a b} \varepsilon^{\dot{\alpha} \dot{\beta}} a_{b \dot{\beta}}^{\dagger}(p) e^{-\mathrm{i} \sigma p}\right) .
\end{aligned}
$$

One can choose $f(p)$ and $h(p)$ such that the quadratic Hamiltonian operator of the superstring is diagonal. Grouping $M=(a \mid \alpha)$, we get the standard harmonic oscillator.

$$
\mathbb{H}_{2}=\int_{\mathbb{R}} \frac{d p}{2 \pi} \omega_{p}\left(a_{M \dot{M}}^{\dagger}(p) a^{M \dot{M}}(p)\right), \quad\left[a^{M \dot{M}}(p), a_{N \dot{N}}^{\dagger}\left(p^{\prime}\right)\right\}=(2 \pi) \delta_{N}^{M} \delta_{\dot{N}}^{\dot{M}} \delta\left(p-p^{\prime}\right) .
$$

Hamiltonian of the quantised $\operatorname{AdS}_{5} \times S^{5}$ superstring (?)

The energy eigenstates are the Fock space spanned by Q-particle states

$$
|\Psi\rangle=a_{M_{1} \dot{M}_{1}}^{\dagger}\left(p_{1}\right) a_{M_{2} \dot{M}_{2}}^{\dagger}\left(p_{2}\right) \cdots a_{M_{Q} \dot{M}_{Q}}^{\dagger}\left(p_{Q}\right)|0\rangle,
$$

and the spectrum is clearly $\mathbb{H}_{2}|\Psi\rangle=E|\psi\rangle$ with $E=\sum_{i=1}^{Q} \omega_{i}=\sum_{i=1}^{Q} \sqrt{1+p_{i}^{2}}$. In fact, the \mathcal{S}-matrix factorises into two-body \mathcal{S}-matrices (a feature of integrable models). The conserved charges of this QFT form the symmetry algebra with charges satisfying

$$
\left\{\mathbb{Q}_{\alpha}^{a}, \mathbb{Q}_{b}^{\dagger \beta}\right\}=\delta_{b}^{a} \mathbb{R}_{\alpha}{ }^{\beta}+\delta_{\alpha}^{\beta} \mathbb{L}_{b}^{a}+\frac{1}{2} \delta_{b}^{a} \delta_{\alpha}^{\beta} \mathbb{H}, \quad\left\{\mathbb{Q}_{\alpha}^{a}, \mathbb{Q}_{\beta}^{b}\right\}=\varepsilon_{\alpha \beta} \varepsilon^{a b} \mathbb{C}
$$

Conclusion

We were able to bring the Green-Schwarz Lagrangian into diagonal form (in terms of the two-index ladder operators) by perturbatively expanding in the large tension limit. But, remember that we were after the full spectrum of the $\operatorname{AdS}_{5} \times S^{5}$ superstring.

$$
\mathscr{L} \longrightarrow \mathcal{H} \longrightarrow \mathbb{H}_{2} \longrightarrow \text { Spectrum } \leftrightarrow \mathcal{N}=4 \text { SYM }
$$

One can 'recompactify' the plane to a cylinder using the thermodynamic Bethe ansatz (TBA) which is related to the integrability of, for example, spin-chain models. It is remarkable and surprising that, by analysing the two-body scattering of worldsheet excitations, one can retrieve the full spectrum of the superstring itself. The gaugestring duality for this example has been extensively studied and agreement has been shown up to 5 loops in the QFT. Where does the $\operatorname{AdS}_{5} \times S^{5}$ superstring stand now?

